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ABSTRACT

This document presents results of conceptual design studies
of commerciai rotary wing transport aircraft for the 1985
time period. Two aircraft configurations - a tandem helicopter
and a tilt rotor have been designed for a 200 nautical mile
short haul mission with an upper limit of 100 passengers. 1In
addition to the baseline aircraft two further designs of each
configuration are included to assess the impact of external

noise design criteria on the aircraft size, weight and cost.
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FOREWORD

This report was prepared by The Boeing Vertol Company for the
National Aeronautics and Space Administration, Ames Research
Center, under NASA Contract NAS2-8048.

The report contains the results of conceptual design studies
of large helicopter and tilt rotor aircraft for the commer-
cial short haul market in 1985.

Mr. D. Giulianetti and Mr. K. H. Edenborough (NASA Ames)

were technical monitors for this work.

The Boeing Vertol Program Manager was J. P. Magee, and Project

Engineer was R. D. Clark.
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SUMMARY

The increasing demand for fast short haul transportation,

the increasing congestion at major airports,and the rising
cost of fossil fuels are all factors to be considered in
assessing the various forms of air transportation to be used
in the next decade.

The study reported herein provides preliminary design data
for two rotary wing aircraft for the short haul market in the
mid 1980's. These aircraft are designed to have vertical
takeoff and landing capability to allow operation away from
the restrictions of existing airports and traffic patterns,
thus relieving congestion.

The two configurations studied were a tandem rotor helicopter
and a tilt rotor aircraft. Each configuration was designed
to carry 100 passengers and luggage over a 200 nautical mile
range.

The design point tandem helicopter has a takeoff design gross
weight of 30,470 Kg(67,175 pounds). The tilt rotor aircraft
takeoff design gross weight is 33,905 Kg (74,749 pounds).
These weights are reflected in the aircraft "fly-away" or
initial costs and result in the helicopter initial cost of
$4.17 million and the tilt rotor initial cost of $5.15 million.
However, the tilt rotor shows advantages which result from its

high cruise speed capability.

xxvii
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The tilt .rotor design cruise speed is 349 knots at 14,000 feet

altitude. The tandem helicopter design cruise speed is 165
knots at 5,000 feet altitude. This marked difference in cruise
speed produces faster block times and trip times for tie
operator and short haul traveller, and combined with lower

fuel requirements, resuits in lower direct operating costs

for the tilt rotor aircraft.

At 230 statute miles the tilt rotor has a direct operating

cost of 2.19¢ per seat mile (1974 dollars) compared with the
tandem helicopter at 3.21¢ per seat mile.

The design point tilt rotor has a lcwer fuel consumption than
the tandem rotor helicopter and can operate up to 47.5 passenger
miles per gallon at 100% load factor compared with the
helicopter at 28.8 passenger miles per gallon,

External noise is an important consideration if short haul

VTOL aircraft are to operate close to areas of high population
density. The 500 foot side line noise levei for the design
point helicopter at takeoff is 92.3 PNdB compared with the
design point tilt rotor at 98.2 PNdB.

This noise difference is negated when the operational environ-
ment is studied. 2 35 PNdB noise level is observed over a larger
total area (.58 sg. mi.) for the helicopter than for the tilt

rotor (.24 sq. mi.) when both takeoff and landing is considered.

The effect of imposing nxternal nois< constraints on the

designs has been _nvestigated by sizing both configurations
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to be 5 PNAB more noisy and 5 PNAB less noisy than the base-

line configuration designs.

For the tandem rotor heliccpter, decreasing the 500' sideline
noise level at takeoff by 5 PNAB increased the aircraft gross
weight to 33,669 Kg (74,227 pounds), increased the aircraft
initial cost to $4.76 million and the direct operating cost
at 230 statute miles to 3.34¢ per seat mile.

If the external noise level at takeoff is allowed to increase
by 5 PNAB the aircraft gross weight reduces to 29,866 Kg
(65,843 pounds), and the aircraft initial cost reduces to
$3.98 million. The direct operating cost at 230 statute miles
did not decrease, but increased to 3.5¢ per seat mile.

For the tilt rotor configuration a reduction in external noise
of 5 PNdB requires an increase in takeoff design gross weight
to 36,143 Kg (79,682 pounds) and a resulting increase in
initial cost to $5.6 million. The direct operating cost
increases to 2.36¢ per seat mile.

A 5 PNdB increase in external noise reduces the tilt rotor
takeoff weight to 33,210 Kg (73,217 pounds) and the initial
cost to $5.03 million. The direct operating cost of the )
aircraft is slightly higher than the baseline tilt rotor at
2.20¢ per seat mile.

The helicopter is thus the slower, more expensive in terms of
direct operating cost, less expensive in terms of initial cost

and less noisy of the two aircraft at 500 feet sideline although

e e -

it effects a larger area than the tilt rotor.
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The tilt rotor is faster, cheaper in terms of direct

operating cost, more expensive in terms of initial cost and
more noisy on takeoff at 500 feet sideliine distance. Its
perceived noise contours encompass a smaller area than the
helicopter case.

Details of the designs are presented in this document. The
report also includes an evaluation of the technical risk
associated with large rotary wing circraft and component
development programs are proposed which minimize such risks.
In the case of the tilt rotor this comporen~- devaelopment
activity includes a flight test program. This is envisioned
as an intermediate gross weight vehicle program which would use
existing airframe components {e.g., CH-47 fuselage), but would
embody full size dynamic components and composite material rotors. A test
program of progressively more severe operating coaditions and
increasing gross weight will permit system development to
commercially acceptable levels of payload. An additional
attraction of this approach is that the intermediate sized aircraft
of initially low disc loading, comes close to being a proto-
type of a vehicle which would be suitable for a number of
military missions (LTTAS, etc.). Thus, this test bed vehicle
would have a range of utilization spanning both miiitary and
civil activities. The following table is a summary of the

aircraft designs used in this study.
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JE A O T R

SPEARERRRLA e

BASELINE +5 PNdB -5 PNdB BASELINE +5 PNdB -5 PNdB
TANDEM TANDEM TANDEM VTOL TILT  VTOL TILT VTOL TILT
HELICOPTER HELICOPTER HELICOPTER  ROTOR ROTOR __ ROTOR
GROSS WEIGHT - 30,470 29,866 33,669 33,905 33,211 36,143
Kg (LBS) (67,175) (65,843) (74,227) (73,217) (73,217)  (99,682)
EMPTY WEIGHT - 18,226 17,305 21,107 22,710 22,116 24,820
Kg (LBS) (40,181) (38,152) (46,533) (50,068) (48,757) (54,718)
CRUISE SPEED - KTS TAS 165 141 181 349 340 355
CRUISE ALTITUDE - 1,524 1,524 1,524 4,267 4,267 4,267
m (FT) (5,000) (5,000) (5,000) (14,000) 14,000) (14,000)
BLOCK TIME - HRS 1.337 1.53 1.24 742 .76 .73
DOC - ¢/SEAT MILE 3.21 3.50 3.34 2.19 2.2 2.36
500' SIDELINE PERCEIVED 92.3 97.2 87.1 98.2 103.2 93.4
{0ISE - PNdB
95 PNdB AREA - TAKE- 0.18 0.49 .03 0.23 0.49 0.08
OFF - Sq Km (Sq. (.07) {(.19) (.01) (.09) (.19) }.03)
Miles)
§5 PNdB AREA - LANDING 1.39 2.28 .76 .39 .75 .18
Sq Km (Sg. Miles) (.535) (.88) (.295) (.15) (.29) (.07)
BLOCK FUEL - Kg(LBS) 2,310 2,536 2,541 1,431 1,403 1,618
(5,093) (5,590) (5,603) (3,157) (3,094) (3,567)
ROTOR DIA. - m (FT) 21(68.9) 20.8(68.2) 22.1(72.5) 37.16(56.3) 17.0(55.7) 17.74(58.2) }
DISC LOADING - 43.94 43.94 43.94 73.2 73.2 73.2
Kg/mé (LBS/FT2) (9.0) (9.0) (9.0) (15) (15) (15)
WING LOADING - Kg/ cese emeee eeeas 488(100) 488(100) 488(100)
m2(LBS/FT2)
HOVER TIPSPEED - 221(725) 247(810) 195(640) 236(775) 279(915)  195(640)
m/s (ft/s)
CRUISE TIPSPEED 221(725) 247(810) 195(640) 165(543) 195(641)  137(448)
m/s {ft/sec) 6 6 6 6
INS.POWER-Watts(HP) 10.79x106( 10.27x106 12.88X10 12.36X10%  11.98x10° 14.52x10
(14,472) (13,770) (17,277) (16,480) (16,072) (19,476
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It is concluded that no insurmountable technology barrier is
identified which is associated with size in either the tandem
helicopter or tilt rotor configurations. The amount of design
and develcpment work required to bring a tandem helicopter
into service will be smaller than those associated with a
tilt rotor since substantial helicopter development at

these gross weights has already been accomplished.
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1.0 INTRODUCTION

.. This report documents the results of conceptual engineering
design studies of two VTOL transport configurations for the
1985 time frame. These studies were performed by the Boeing
Vertol Company fcr NASA-Ames Research Center, under NASA
Contract NAS2-8048.

The studies required the definition of a tandem rotor heli-

O e L

copter and a tilt rotor aircraft for a short naul commercial
transport mission. The aircraft have been sized for 100
: passengers, the maximum number of passengers permitted by the

study groundrules, and a 200 nautical mile design mission.

The objectives in performing these studies were twofold. The
first objective was to provide design data for the two rotary
wing ccenfigurations. The data is required as input information
for a larger VTOL transportation systems study to be performed
by NASA. The second objective was to identify the size and
performance of rotary wing commercial transport aircraft in the
short haul environment at a time when increasing fuel costs,
environmental issues, and the efficient use of existing and

new terminal facilities becomes increasingly important in the
selection of future vehicles. As the reliability levels of
rotorcraft rise and vibration decreases through continued
research, the rotary wing machine can offer a flexible,

viable alternative to other forms of short haul transportation.

i
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Details of the design point aircraft defined by this study

(a tandem rotor helicopter and a tilt rotor) are discussed in
Section 2.0 of this volume.

In addition, derivative aircraft have been designed to
varying levels of external noise. For each configuration two
additional aircraft were .lefined having noise characteristics
+5 PNdB in relation to the basic design point aircraft. These
aircraft are described in Section 3.0 of this report.
Comparisons of the two configurations and of the effects of
noise criteria are drawn in Section 4.0.

The broader and less easily quantified topics which fall
under the general heading of risk are discussed in Section 5.
This includes such issues as the technical risks associated
with component size and economic visability. These naturally
tend to conflict. Technical risk must be assumed to increase.,
the further one proceeds beyond the level of past experience,
while the probability of good economic performance improves
up to the sizes which have been considered. In Section 5 it
has been concluded that the technical and engineering risks
associated with the 100 passenger size helicopter and tilt
rotor are acceptable, provided that a decision to build is
accompanied by an orderly and comprehensive program of
component test and development.

Throughout the study it has been assumed that levels of
comfort and reliability, at least as yood as current jet

transports, will be required to gain passenger and operator

e
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acceptance. This will require special efforts to ensure the

fullest use of vibration reducing equipment, and in the case
of the tilt rotor, the application of advanced active control

system techniques in order to attain acceptable ride qualities

characteristics.
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2.0 DESIGN POINT AIRCRAFT

This section describes the two baseline design point aircraft
- a tandem rotor helicopter and a tilt rotor aircraft. These
vehicles have been selected and refined from initial vehicle
trend studies. Each configuration carries one hundred (100)
passengers and has a 200 nautical mile design mission. The
design selections are based on minimum operating cost and

are constrained by the NASA design guidelines (see Section 4,
Volume II.)

For each configuration the design layout, weights data,
vehicle performance, stability and control, noise and cost
data are presented. The comprehensive background technology
data which support the summary information presented in

this section are contained in Volume II.

A design identification numbering system has been adopted to
allow ease of discussion in comparing designs - for example,
TH~100 (92.3) and TR-100 {98.2). The initial letters indicate
the configuration: TH - tandem helicopter; TR - tilt rotor.
The -100 number indicates 100 passenger designs and the number
in parentheses (92.3) is the PNdB value at 500 feet side line
in hover to distinguish between the vehicles designed to
various noise criteria as discussed in Section 3.0.

2.1 DESIGN POINT TANDEM ROTOR HELICOPTER - TH-100 (92.3)

The tandem rotor helicopter configuration was selected over
other pure helicopter types for this study because of the

inherently lower risk of large helicopter development for
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this type. The primary risks in the development of these

aircraft are related to rotor size, transmission and rotor
gearbox torque capability as discussed in Section 5.0. The
individual components are generally smaller and more within
the manufacturing state-of-the-art in a tandem design than
for a single rotor machine. Other advantages of the

tandem coiifiguration include ease of handling large CG excur-
sions and the ability to locate the engines away from the
passenger cabin. This latter capability keeps engine noise,
fumes and carbon deposition away from passenger areas. In
addition, Boeing experience with tandem rotor helicopters
ranging in size from 5,000 pounds to 120,000 pounds gross
weight provides a high degree of confidence in prediction and
design techniques.

2.1.1 Design TH-100 (92.3) - Configuration and Layout

The tandem rotor design point aircraft is shown in Figure 2.1.
The major aircraft dimensions and pertinent data are shown in
Table 2.1 and a threeview is shown in Figure 2.2,

This vehicle weighs 30,470 Kg (67,175 pounds) design takeoff
gross weight and has an installed shaft horsepower of

3.597 X 10® Watts (14,472 HP) at sea level standard day. The
two 68.9 foot rotors are four-bladed articulated rotors with
a solidity ratio of 0.099. The selection of rotor solidity
has been made to provide freedom from stall flutter loads
over the entire maneuver envelope. The rotor overlap has

been held to zero to eliminate rotor "bang" due to one rotor

B bt - — -
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cutting the trailed vortices of the other and also to

eliminate the possibility of blade collision in the event of

a desynchronization failure.

Both rotor shafts are swept foiward (7-degrees forward rotor
and 4-degrees aft rotor). This minimizes the floor angle range
during hover and cruise flight, and also minimizes rotor loads.
The oylon heights are arranged to provide a gap to stagger
ratio of 0.173. This clearance is required to keep noise,
rotor loads and induced power losses at a minimum.

The aircraft has three engines located aft, one on each side
of the rear rotor pylon and the third buried in the pylon
itself, similar to the XCH-62 (HLH). The intake for the third
engine is shown in Figure 2.2, in the leading edge of the

rear rotor pylon. The rationale for selecting a three-engine
configuration is given in Volume II.

The transmission layout is a three gearbox arrangement where
three engines drive into a combiner gearbox located aft and
above the passenger cabin. The combiner box is designed

for easy removal through the baggage hold ceiling.

Power is transmitted to the aft rotor by shafting in the rear
pylon which drives the aft rotor transmission, and to the for-
ward rotor by shafting along a fuselage tunnel to the forward
rotor transmission located forward of the passenger cabin. The
APU (Auxiliary Power Unit) is located in the aft fuselage

compartment in c:ose proximity to t'.: engines.

10
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This arrangement has been selected for minimum complexity,

cost, weight and performance losses as well as to minimize

the effects of engine and transmission noise and vibratior in
the passenger cabin.

The fuel tanks are located under the rear cabin floor as shown
in Figure 2.2. These tanks are "crashworthy" tank3 similar

to those built and tested by the Boeing Vertol Company for
CH-46/47 applications (Volume II). The design philosophy

is to provide adequate tank strength to ensure that no rupture
will occur in the event of a 95th percentile crash. The
system is designed for pressure refueling (300 gpm) with
crossfeed valving, a fuel pump in each tank, and with fuel
pump valves and lines routed away from the landing gear. The
dual bleed conditioning system is located in the aft fuselage
compartment adjacent to the APU and engine bays.

The landing gear is a tricycle layout providing excellent
ground handling characteristics. The dual wheel gears are
retractable into the fuselage for minimum drag and the

system is designed for 500 feet per minute rate of sink on
landing. The arrangement provides an overturning arngle of
27-degrees and adequate fuselage clearance for flared

1 .nding.

Cabin layout and passenger accommodation details are shown in
Figures 2.2 and 2.3. The aircraft cabin has two main entrances
located on the port side of the aircraft. The aft entrance

is equipped with ar air stair in accordance with the study

11
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guidelines. The rear entrance is the rnormal entrance and the

exit is located adjacent to the stowed baggage compartment

in the rear of the aircraft.

A third entrance is located on the starboard side of the cabin
forward adjacent to the service facilities and serves the dual
role as a service entrance, and an emergency exit.

A further Type I exit is located aft directly opposite the main
entrance and again serves a dual rele in that it can be used

to load baggage by ground crew and also provides an emergency
exit. This additional access provides the operatcr with
flexibility in baggage handling procedures.

In addition to these, two additional Type II emergency exits
are located amidships, one to each side. The location of these
exits cuauses the pitch between the ninth and tenth rows of
seats to be increased to 45-inches to allow a 20-inch wide
access to the exit.

Six Type IV exits are provided in the cabin roof to be used

in the event of an aircraft being turned over on one side.

The passenger cabin has seats for 100 passengers with an

overall seat width of 2l-inches and a seat pitch of

34-inches.

Each passenger has underseat stowage space (9-inches X l6-inches
X 23~-incnes) and overhead rack stowage with lockable doors.

Air vents, individual lights and a folding table are provided
for each passenger in accordance with normal commercial air-
craft practice.

13
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The cabin has dual 19-inch aisles and the main cabin lights

are located over the aisles. i
Two coatracks are provided - one forward and one aft with
provisions for 80 passengers.

Two lavatories are located in the forward end of the cakin.
In the center of the torward cabin is the beverage storage
and service counter space which also incorporates ticketing
facilities.

There are two cabin attendant seats. One is located forward
against the forward passenger cabin bulkhead and close to the
forward exits. The second is z2ft against the baagage hold
bulkhead and close to the rear Type I exits.

The aircraft avionics and navigational gear compartment is on
the port side of the aircraft just forward of the cockpit/cabin
bulkhead. The cockpit space provides adequate accommodation
for a flight crew of two with excellent visibility. A third
"observer" seat is provided adjacent to the avionics compart-
ment at the rear of the cockpit. This location provides the
observer good forward vision, visibility over the flight crew
stations and also access to the avionics/nav-aids compartment
if required. The cockpit is provided with two crew emergency
exits - one on each side of the cockpit.

2.1.2 Tandem Helicopter Design Point Weights

The design gross weight of the tandem rotor design point
heliccpter is 30,469 Kg (67,175 pounds). The aircraft empty

weight is 18,221.8 Kg (40,179 pounds). Table 2.2 gives the

14 .
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weight breakdown in terms of structural components and

aircraft systems. The weight of each component or system has

been computed using the HESCOMP sizing program (Reference 1 )

which uses statistical and semi-empirical weight trend

equations based on known aircraft weights.

The sizing pro-

cedure is an iterative procedure in which the aircraft weight

is varied until the mission fuel required is equal to the

allocated fuel weight.

Weights of all structural components have been reduced by

25% from the trend curve data in keeping with the guideline

directive on the use of composite materials.

Several standard item weights were also specified as shown

in Table 2,3.

TABLE 2.3. WEIGHTS SPECIFIEC BY STUDY GUIDELINES.

ITEM

WEIGHT

WHEELS, TIRES, AND BRAKES

COMPANY OPTIMUM

INSTRUMENTS (Flight and Navigation)

ELECTRICAL (Excluding Generating
Equipment)

ELECTRONICS (Communication, Flight,
and Navigation)

AUXILIARY POWER UNIT INSTALLATION

1200 Pounds

SEATS AND BELTS

PASSENGER: DOUBLE
TRIPLE

CREW SEATS: CABIN CREW

16
16

16

Lbs/Passenger
Lbs/Passenger

Lbs/Crew Member

16

FLIGHT CREW 40 Lbs/Crew Member
LAVATORY 300 Lbs/Unit -
“BEVERAGE ONLY 200 Lbs Total
“AIR STAIR - 300 Lbs
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The 544.2 Kg (1,200 pounds) allocated for auxiliary power

unit, instruments, electrical and electronics has been assumed
to be an uninstalled weight and an additional 440.8 Kg (9,721
pounds; has been included to account for installation.

The engine weights are based on a projected specific weight
of .15 pounds per shaft horsepower which is expected to be
available for application to a 1985 commercial aircraft.

The control system is a fly-by-wire system and the weight
estirate for the controls is based upon recent Boeing exper-
ience with fly-by-wire controls on the Model 347 helicopter.
The rotor gearboxes are designed for maximum engine power

and torque under sea level standard day conditions.

The landing gear is designed for a 500 foot per minute rate
of descent and is 4% of weight empty.

Passenger and crew accommodations are based on Boeing 737
aircraft data since it will be necessary to provide passenger
comfort to at least this standard by 1985.

The overall aircraft is sized for a maneuver load factor of
3.5 and an ultimate load factor of 5.25 as recommended in
FAR Part 29.

The aircraft center of gravity and inertias for both design
gross weight and weight empty are shown in Table 2.4. The
aircraft CG envelope is shown in Figure 2.4. There is no

need to restrict seating arrangements.

17
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WEIGHT EMPTY

GROSS WE1GHT

WEIGHT

CENTER OF GRAVITY*
FUSELAGE STATION
WATER LINE

MOMENT OF INERTIA

I (ROLL)
XX

I (PITCH)
Yy

IZZ (YAW)

18,224.8 Kg
(40,179 LBS)

15.25 M (600.4 IN.)

3.59 M (141.5 IN.)

89,392.5 Kg M2
(10,143.5 Slug Ft2)

1,513,958.3 Kg M2
(1,116,826.9 Slug
Ft2)

1,462,026.2 Kg M2

(1,078,523.9 Slug
Ft2)

30,469.9 Kg
(67,175 LBS)

14.53 M (572.0 IN.)

2.83 M (111.5 IN.)

96,121 Kg M2
(10,907 Slug Ft2)

1,627,912 Kg M2
(1,200,889 Slug
Ft2)

1,572,081 Kg M2

(1,159,703 Slug
Ft2)

*FUSELAGE STATION 0 IS AT NOSE OF BODY, CENTERLINE OF FORWARD
ROTOR 5.0 METERS ABOVE WATER LINE.

TABLE 2.4.

WEIGHT, CENTER OF GRAVITY AND MOMENT OF

INERTIA - DESIGN POINT HELICOPTER.

18
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In order to provide ready comparison of this aircraft design

weight with other designs with different fixed weights, the
aircraft growth data are shown in Figure 2.5. This curve
allows an aircraft weight to be obtained for a variation in a
fixed weight item and allows reasonable comparison cof weight
with other designs based on different fixed equipment, etc.
assumptions.

Detailed justification of the component and subsystem weights
is provided in Volume II.

2.1.3 Vehicle Performance

Mission Performance

The design point tandem helicopter has been sized to fly the
mission shown in Table 2.5 and Figure 2.6, with a range of
200 nautical miles.

A performance sunmary of the design point aircraft flying
this mission is shown in Tables 2.6 and 2.7. The aircraft
initial weight is 67,175 pounds. The aircraft is taxied with
the engine at the ground idle engine rating, for a one minute
period and 12.3 pounds of fuel is used. An additional 107
pounds of fuel is required to execute the takeoff, initial
air maneuver and acceleration to climb speed. The aircraft
then climbs to 5,000 feet altitude at a rate of climb of
approximately 1,800 feet per minute.

The climb segment is accomplished in 2.76 minutes and requires
190.4 pounds of fuel and a distance of 4.26 nautical miles

is covered.

19
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FIGURE 2.5. BASELINE HELICOPTER WEIGHT GROWTH AT

CONSTANT PERFORMANCE AND STRENGTH.
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TIME DISTANCE

SEGMENT VTOL VTOL REMARKS
Taxi Out 1 min, 0
Takeoff, Transition
& Conversion to
Conventional Flight 0.5 min. 0
Alr Maneuvcr
{Origin) 0.5 min. o

Acceleration to

Climb Speed As Calculated
climb As Calculated At cptimum Climb Spd
Cruise AS Calculated At Constant Integral

1000 ft. Altitudes(No
Enroute Altitude Crar,

Descent to
2000 ft.

As Calculated

5000 £pm maximum
rate of Descent

Air Maneuver at

2000 ft. (destination] 1.5 min. 0
Decelerating Approach
and Conversion to As Calculated 0 ;ogo f?”nﬂiiiﬂzm
Powered Lift Flight s Calcula ate o
2000 ft. to 1000 ft.
Transition and 1000 fpm maximum Rate]
landing from 1000 ft. of Descent Down to
to Touchdown As Calculated 0 15 ft.
600 fpm Maximum Rate
of Descent Below 35ft]
Taxi In 1 min. 0

TABLE 2.5

V/STOL MISSION PROFILE DEFINITION.
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The cruise segment of the mission is done at 5,000 feet

altitude. At the start of the cruise segment of the mission
the aircraft weight is 66,865 pounds and the airspeed is
165.6 knots (TAS). After cruising for 1.154 hours the
aircraft has travelled a total of 137 nauticsl miles and
the aircraft weight has reduced to 62,234 pounds, and the
cruise speed has increased to 170 knots (TAS). The fuel

for the cruise segment is 4670.4 p. ands.

The descent segment to 2,000 feet altitude completes the
range to 200 nautical miles at rate of descent of 2,460 feet
per minute (within the specified maximum of 5,000 .zet per
minute (Table 2.5).

The air maneuver at 2,000 feet altitude has been computed as
a loiter for 1.5 minutes and requires 64.9 pounds of fuel.
This is followed by the final descent to 1,000 feet altitude
on a spiral descent flight path at 1,000 feet per minute
rate of descent.

Descent from 1,000 feet and landing takes 1.5 minutes and is
followed by a taxi segment at ground idle engine rating for
one minute.

This completes the 200 nautical mile mission with a block
time of 1.337 hours and a fuel burn-off of 5,092.5 pounds
and a final aircraft weight of 62,082 pounds.

The reserve fuel is calculated for a range increment of 50
nautical miles at 29% best ra.ge speed and a loiter for 29

minutes. The reserve fuel required is 1,914 peunds giving
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a total fuel load of 7,006.8. pounds.

Hover Performance

The hover performance of the design point tandem rotor heli-
copter is shown in Figures 2.7 and 2.8.

Data given for both all engines operating (AEO) and one engine
inoperative (OEI) as well as in and out of ground effect (IGE,
OGE) is included.

The design point aircraft is sized to a 9(0-degrees F sea level
condition OEI. This point is shown on Figure 2.7 at a hover
weight of 67,175 pounds. The OEI data assumes a force-to-
weight ratio (F/W) of 1.03.

The requirement to size the transmission to maximum sea level
shaft horsepower provides OEI performance which is power
limited. In the all engines operating case the torque linmit
is set such that both power and tcrque limit coincide at
59-degrees F ambient temperature.

Maintaining a one engine out requirement and operating at
standard day out of ground effect, the aircraft can take off
at a gross weight of 74,700 pounds, ar increase of 7,525
pounds. This would not be allowable as extra payload since
the FAA takeoff gross welght certification would limit the
aircraft to 67,175 pounds. The higher weight would isolate
the design load factor capability. This extra lift represents
increased force-to-weight capability (F/W = 1.16) at sea

level standard.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92,3 PNdB

ALL ENGINES OPERATING

F/W = 1.05
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

ONE ENGINE INOPERATIVE
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With all engines operating out of ground effect, the aircraft

lift capability provides an allowable force-to-weight ratio
of 1.47 at 59-degrees F; at 90-degrees F this reduces to
1.31.

Data are provid-:d for hover in ground effect. This demon-
strates increased static lift capability better than the cer-
tified value. Again this increased capability can only be
considered as an additional force-to-weight capability on
takeofif or as a ground cushion in a landing flare.

The effect of altitude on hover performance is shown in
Figure 2.9 for all engines operating. The fully loaded

(100 passengers) aircraft could hover up to an altitude of
11,500 feet on a standard day and 8,000 feet for an ambient
of standard plus 3l-degrees F. The operating altitude is
significantly less than this.

The altitude performance with one engine inoperative is

shown in Figure 2.10. The design point aircraft is shown

at sea level 90-degrees. For a standard " 'v the OEI altitude
capability increases to 4,500 feet.

Hover Download

An important issue in the prediction of hover performance and
in the sizing of the design point aircraft installed power

is the estimation of the download on the ajrcraft fuselage
due to the downwash from the rotors. This effect has been
computed using a semi-empirical technique described in

Section 3.1, Volume II.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 67,175 LBS/30,470 Kg
MIDWT = 59,175 LBS/26,841 Kg
OWE = 42,168 LBS/19,127 Kg

ALTITUDE = EEA LEVEL
STANDARD DAY

10x106

124793

NRP (AEO)

=

0

h\\\\ NRP (OEI) —

2]
T
Q0

o]

o>
TOTAL SHAFT HORSEPOWER

TOTAL POWER - WATTS
.

2 | N -
0 100
AIRSPEED - KNOTS 200

¥ 1,

FIGURE 2.11. CRUISE PERFORMANCE - POWER REQUIRED/AVAILABLE,
STANDARD DAY.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 67,175 LBS/30,470 Kg
MIDWT = 53,175 LBS/26,840 Kg
OWE = 42,168 LBS/19,127 Kg

ALTITUDE = 5000 FEET (1524 m)
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

STANDARD DAY NORMAL RATED POWER
AEO & OEI CRUISE RPM

"
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FIGURE 2.13. LEVEL FLIGHT CRUISE SPEED ENVELOPE.
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The download on the aircraft at the design hover condition

is 8.6% of the rotor thrust and this lift loss has been
included in the sizing and performance calculations.

Performance at Forward Speed

The design point tandem helicopter power required and power
available data are shown in Figures 2.11 and 2.12 for both
sea level and 5,000 feet (design cruise) altitudes for
standard day conditions. Power required data are given for
three different aircraft weights ranging from operating
weight empty to design gross weight.

At zero airspeed for both altitudes the aircraft power required
is less than NRP (normal rated power).

The intersections of the power required and available lineg
indicate the maximum cruise speed performance capability.

The design gross weight aircraft can fly at 168 knots at

sea level all engines operating. This speed increases to

182 knots at operating weight empty. With one engine inoper-
ative a maximum speed of 156 knots can be achieved at design
gross weight at sea level.

At 5,000 feet altitude the NRP cruise speed is 165 knots

at design gross weight and 185 knots at weight empty.' These
speeds decrease to 145 knots and 169 knots respectively with
one engine inoperative.

The speed performance capability as a function of altitude

is shown in Figure 2.13.
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Rate of Climb

Rate of climb capability is shown as a function of altitude
and gross weight in Figure 2.14. The two conditions of both
all engines operating and one engine inoperative are shown.
At design gross weight the aircraft achieves a maximum rate
of climb of 3,650 feet per minute all engines operating at
sea level. At design cruise altitude (5,000 feet) a climb
rate of 2,910 feet per minute can be maintained.

With one engine incperative a rate of climb of 1,670 feet
per minute can be maintained dropping to 1,200 feet per
minute at design cruise altitude.

At minimum weight or operating weight empty the rate of
climb capability increased to 6,900 feet per minute at sea
level with all engines operating and 3,900 feet per minute
with one engine inoperative. The engine power setting used
for all climb calculations is a MIL rating.

Specific Range

The fuel consumption of the aircraft in cruise at both sea
level and 5,000 feet altitudes, all engines operating, is
given in Figure 2.15 for the range of aircraft weights. At
design gross weight the aircraft achieves a maximum specific
range of 0.0425 nautical miles per pound fuel at 140 knots at
sea level. This improves to .044 nautical miles per pound

at 500 feet.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

CLIMB CAPABILITY TAKEOFF RPM
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FIGURE 2.14 . BASELINE HELiCOPTER DESIGN POINT AIRCRAFT-

CLIMB CAPABILITY.
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BASELINE AIRCRAFT PERFORMANCE

TANDEM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 57,175 LBS/30.470 Kg
MIDWT = 59,175 LBS/26,841 Kg
OWE = 42,168 LBS/19,120 Kg
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At the NRP cruise speeds the specific ri—~ge is lower - 0.04

nautical miles per pound at design gross weigh: sea level

and 0.041 at 5,000 feet.

With one engine inoperative (Figure 2.16) the specific range
of the aircraft increases due to the increasec power setti:..g
of the remaining two engines. On a standard day at sea level
a specific range of 0.048 nautical miles per pound of fuel can
be achieved at design gross weiglt at 131 knots, At 5,000
feet altitude the maximum specific reige is slightly higher

at 0.0485 nautical miles per pound of fu=l at design gross
weight.

Payload Range

The payload range performance was a4 specified criterior for
the design point aircraft, and is shown in Figure 2.17. The
design range is 209 nautical miles with a full load of 100
passe.gers. Reserve fuel as defined in the mission profile
is still available at 200 nautical miles. The basic 200
nautical mile nmission fuel limit defines the range of lighter
weights such that with no passengers on board the range
increases to 241 nautical niles.

An extended range version of the design point aircraft has
been considered by the addition cof extra fuel tanks and .e-
moving two passcngers to allow for the tank weigat increase.
This aircraft would carry 98 passengers 200 nautical miles
or could be used for 72 p/:sengers up to 400 nautical mile

range. The basic aircraft paylnad-ranye capability increases
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o» BEASELINE AIRCRAFT PERFORMANCE

TANDLM HELICOPTER/100 PASSENGER/92.3 PNdB

DGW = 67,175 LBS/30,470 K
MIDWT=59,175 LBS/26,841 ..
OWE = 42,168 LBS/19,120 K

ONE ENGINE INOPERATIVE
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with one engine inoperative since the remaining engines

are now operating at a higher percentage of power available
which improves the engine SFC. Assuming cruise OEI the fully

increases to 250 nautical miles and 325

r
[¢]
v
)
)J

rautical miles with no passenger load.
Drag
The minimum drag of the design point aircraft is shown in

Table 2.8 in terms of equivalent drag area (F,). The major

contributions are from the fuse“age (10.019 th), and the
2
rotor hubs (20.2 Ft ). The total aircraft F, is 38.51 square

feet giving a gross weight to F, ratio of

GW = 1,765 Lbs/Ft?

Fe

A description of the drag methodology and justification for
this drag estimate is given in Volume II.

2.1.4 Flying Qualities - Design Point Tandem Helicopter

Aircraft Trim

Trim data for the baseline tandem helicopter have been computed
for a wide variation of aircraft weight and CG. The lightest
weight considered is the operating weight empty 43,000 pounds
at a 586 inch CG location. Two CG locations have been taken
for a mid range aircraft weight of 57,500 pounds (FWD 556
inches and AFT 610 inches) and at design gross weight (67,175
pounds) a CG range from 560 inches (FWD) to 590 inches (AFT)
has been used. The CG locations are given by the fuselage

reference station locations.
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TANDEM HELICOPTER DRAG SUMMARY
ITEM DRAG AREA fe - Ft
FUSELAGE 10.0193
FORWARD PYLON 2.8842
AFT PYLON 3.0609
NACELLES 1.4618
MISCELLANEOQOUS
OIL COOLER MOMENTUM LOSS .3000
AIR CONDITIONING .5000
TRIM .0900
SUB TOTAL 18.3162
ROTOR HUBS 20.2
TOTAL DRAG AREA 38.5162
Ef;_g = $115 = 1,744 LBS/FT°

TABLE 2.8. TANDEM HELICOPTER - BASELINE AIRC AFT
DRAG SUMMARY.
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The aircraft attitudes and control deflections over the

entire speed range are shown in Figures 2.19 and 2.20.

Data in the airspeed range from zero to 60 knots have been
computed at the takeoff ambient conditions of sea level
90-degrees F. From 100 knots to maximum airspeed, the cruise
altitude of 5,000 feet at 4l1-degrees F (standard) is assumed.
The 60 knot to 100 knot airspeed range is an altitude transi-
tion.

The flight control kinematics and cumulative limit data are
given in Table 2.9. These control ranges are based upon
analysis of the HLH aircraft flight controls. The large
ccllective range is selected to provide autorotative capa-
bility at light gross weight at 90% RPM and to absorb full
transmission power at light gross weight for a power climb.
Differential collective pitch, lateral and pedal ranges have

been selected in accordance with MIL 8501Aa

For all gross weights and CG positions the variation of fuse-
lage incidence c¢vei the range of airspeeds is small as a
result of the large cyclic trim range available. The effect
of gross weight and CG position on attitude is also small
which is an inherent advantage of the tandem rotor helicopter
from a passenger comfort standpoint. The aft rotor cyclic is
scheduled with gross weight to minimize aft rotor flapping

excursions and reduce a tendency to aeromechanical resonance.
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In order to meet the angle of attack stability criteria,

26.5 degrees, delta three have been introduced to the forward
rotor. The effect of delta three on rudder pedal to trim is
to essentially zero the pedal travel over the airspeed

range.

The trim cyclic stick travels are modest compared with avaii-
able control. For the SAS-ON cases a simple augmentation
system is used on longitudinal and lateral stick. No SAS is
applied to collective. The SAS system gains and limits are
given in Table 2.10. With SAS-ON, the lateral stick excur-
sions are essentially zero and a positive longitudinal stick
gradient resultc.

The DASH system provides strong attitude and airspeed hold for
unintentional disturbances and provides quickening in pitch
fer pilot command disturbances.

Control Power in Level Flight

The control powers available are shown in Figures 2.21, 2.22
and 2.23 for the range of gross weights and CG positions.
Pitch control power is a minimum of 0.7 rads/sec square in
hover SAS OFF and exceeds the minimum control powers defined
in the guidelines at all airspeeds, gross weights and CG
locations. With SAS ON, the pitch control power increases.
The roll control power available is shown in Figure 2.22 and
again is much higher than minimum guideline requirements. In
this instance three aircraft weights are shown. CG location

has almost no effect on roll control power.
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Yaw control power is shown in Figure 2.23 and aga‘n exceeds
the guideline requirements, however, at the light weight the
yaw control for the unaugmented aircraft is marginal at 40
knots, The yaw SAS provides quickening with a gain of 1.5

¥ inches per inch out to 40 knots limited by +1.25 inches
actuator stroke. This quickening is washed out from 40 to 80
knots. With SAS ON the yaw control improves as showr in
Figure 2.23.

control Powers in Sideslip

For a tandem rntor helicopter, the collective and lonjitudinal
stick pesitions in sideslip are not significantly different
from trimmed level flight data. Hence, longitudinal contrc.
power available in sideslip is substantially unchanged from
the level flight values in Figure 2.21,

Yaw control margins in sideslip, both basic and augmented,

are substantial, but roll control has low margins and may be
critical. The lowest roll control margins occur at 57,500
pounds with lateral CG offset. Since roll control sensitivity
is also lowest for this gross weight, roll and cumulative
roll/yaw control/power margins are checked for this weight
with lateral CG offset, for both basic and augmented control
systems (Figure 2.24).

Roll control augmentation consists solely of the speed-
scheduled stick offset, while yaw contrel ugmentation con-
sists of quickening at hover, and sideslip stability at 80

knots and V maximum.
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In computing the roll and yaw control power associated with
the available control margins, it is assumed that control
sensitivity does not vary significantly with sideslip, and
hence the level flight control derivatives are used.
Although yaw control margins are not substantially reduced
with respect to level flight values, the low control power
available in yaw, particularly at low gross weight, as shown
in Figure 2.23, indicates that yaw control power should be
checked in sideslip at light weight.

The resultant yaw control power data, Figure 2.25, shows
adequate margins in yaw. The inflection points in the data
are due to cumulative lateral cyclic limits being encountered
in the control system.

Response to Control Inputs

Typical time histor:es of respcnses to pitch, roll and yaw
control input are shown in Figure 2.26 for design gruss
weight, aft CG at hover. The one second requirement for both
basic and augmented aircraft is met.

The attitudes attained in one second for all other grcss
weights and airspeeds are summarized in Figures 2.27, 2.28
and 2.29. The requirements are met in all cases. Only 2
augmented aircraft data are shown here, the unaugmented data
being much higher. The unaugmented aircraft is more lively
than the augmented aircraft due to the absence of artificial

damping.
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Rotor and Control System LAGS

Based on Boeing Vertol experience with the 347 ailrcraft,
control system lag (pilot to swashplate) is estimated =:0 be
about 0.1 second for conventional control system. This is
conservative for a flyv-by-wire system, where only actuator
lags are significant. The rotor lag is 0.055 ceconds.
These system characteristics meet tlie requirements defined
in the study guidelines.

Aircraft Stability

The stability characteristics of the basic (unaugmented)
vehicle are presented in Fiqure 2.30. These ch.racteristics
can be augmented to any desired level, to provice optimum
flying qualities.
The levels of stability shown provide mildly stable character-
istics in the basic vehicle, which can therefore be flown
safely (pilot rating of 5 or better) after complete failure
of the sugmentation system. These mildly positive stability
levels provide a vehicle which
(a) is readily augmented to any desired level,
(b) has no inherent instabilities to complicate
AFCS design,
(c) has no inherent strong stability to be overcome
by the ccntrol system in maneuvers, and
(d) has inherent minimum gust response (attitude
wise).

The longitudinal static stability exceeds the M, >0 criterion
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in cruise for all airspeeds above 120 knots at aft CG.

This is achieved by 26.5 degree stabilizing delta tFr.e 1;
the forward rotor. The mild instability indicated at lower
airspeeds will present no difficulty, since the dvnamic

stability criterion (quw

- Ma>0) is met at all airspeeds.
This parameter represents the stability of the aircraft in a
maneuver, and the criterion corresponds to positive maneuver
margin on a fixed wing aircraft.

The directional static stability exceeds the NB>0 criterion

at all airspeeds and gross weights.

The augmented values of M, range from 2.60 to 6.30, which is

well off the graph. Similarly, for dynamic stability

( - MG), the augmented ranges is from 3.50 to 10.50.

M2y
Augmented values of Ny range from 0.30 to 1.0 as shown.

The lateral stick and directional pedal position gradients
(Figures 2.31 and 2.32) are positive in sideslip for side-
winds up to 25 knots and beyond. The gradients shown are
for symmetrical lateral CG position. The effects of lateral
CG offset are indicated by the open symbols (basic aircraft)
and dark symbols (augmented aircraft). Roll attitudes are
acceptable.

Lateral stick margins for the unaugmented aircraft with
lateral CG offset can be as low as 0.7 inches (9%) in a

high speed sideslip, but augmentation increases this margin

to 1.6 inches (.7%). With no lateral CG offset, the
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augmented lateral stick margin is 2.2 inches (28%) or better.

The pedal gradient of the basic aircraft in sideslip is low,
but artificial stability improves this to an acceptable
value.

Dynamic Stability Criterion

Compliance with dynamic stability criteria is shown in Figure
2.33. The range of desirable damping versus frequency defined
in the guidelines pertain to hover and low speed. An additional
requirement from AGARD 577 is shown shaded for Level 1 at

high speed. The stability contours shown cover the speed
range from hover to V maximum, progressing in the direction

of the arrows. The intermediate points pertain to 80 knots.
The unaugmented aircraft meets the Level 2 requirement at all
airspeeds. The augmented aircraft falls within the Level 1
window at low speeds, and meets the Level 1 requirement cf
AGARD 577 at high speed.

Descending Flare Requirements

The tabulated data pertain to the unaugmented aircraft. The
control positions, therefore, represent rotor control used
in the specified maneuver. At all airspeeds, the control
inputs regiired are well within rotor capabilities, as

shown in the following table.
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GW = 67,175 LBS

MAXIMUM ZEP? 25 KNOT

2000 Ft/Min R/S RANGE | __SIDEWIRD | _SIDEWIND

0.15g Decceleration | AVAILABLE | MIN. | MAX. | MIN. | MAX.
COLLECTIVE 0 to 9.0 0.76 | 4.22 | 0.72] 3.86
DCP +5.50 -5.87] 0.72 | 0.48} 1.05
Lateral Stick +4.00 0.24] 0.27 | 0.72}| o0.85
Fudder Pedal +2.50 0.19| 0.27 | ¢.11| o0.20
POWER REQUIRED 0 to 9500 [ -1570| 4960 |-1500| 4330

The negative horsepower required at 80 and 100 knots indica:e

rotor overspeed conditions of 6% and 9% excess RPM respectively

for zero horsepower.

Gust Sensitivity

The tandem helicopter aircraft is naturally insensitive to
gusts. Computations based on a 10 feet pe second gust of
varying length were performed. The worst cases are as :;hown
1n Pigure 2.34. Variations in gross weight do not signifi-
cantly change the gust sensitivity. The aircraft meets the
specified criteria at all conditions at 10,000 feet altitude
and at all except the forward CG case at high speed at 5,000
feet.

It is doubtful whether action should be taken to make this
point fall within the criteria line, however, collective
feedback could be used to correct this small deficiercy

for little more than the weight of the sensors and signal
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DZ10-10858-1
conditioning electronics (i.e., less than 50 pounds).

Hover Gust Control

The control ranges available after trim in hover at both zero
wind and 25 knot sidewind are given in Table 2,11 for three
gross weights. The percent of the available control required
to counteract a 15 feet per second gust upset are shown for
gust upsets in any direction. In no case is more than 20%

of the remaining control required to counteract the gust.

2.1.5 Tandem Helicopter - Design Point Noise

The design criteria for external noise is that the 500-foct
sideline noise level in hover at 100 feet altitude is to be
between 90 and 100 PNdB. The design point tandem helicopter
is relatively quiet with a 500-foot sideline perceived noise
level of 92.3 PNdB.

The noise criterion was stated in terms of perceived noise
.evel (PNdB) to provide some means of comparison with aircraft
designed to similar criterion in other studies. It was
recognized, however, that the validity of PNdB as a community
acceptance indicator may not be valid since the noise signature
ithe distribution of absolute sound pressure level as a
function of frequency) is markedly different for large
helicopters than for jet engined aircraft.

For this reason the absolute sound pressure levels as a
function of octave banil frequency are also provided in Figure
2.35 for the noise producing components as well as the overall

aircraft noise. The overall aircraft SPL is set for most
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of the frequency range by the rotor to broadband noise,

though at the very low frequencies the rotor rotational noise
becomes dominant. Thus the PNdB value is set pr:-iarily by
rotor noise.

Unless special noise suppression ieasures are adopted, the
engine inlet noise becomes dominant in the 4 KHz to 8 XHz
octave bands. The engine inlet is, therefore, assumed to be
treated for noise reduction by installing acoustic absorption
linings. The :nle%t absorption lining has been tuned to two
bands with center of frequencies 4 KHz and ¢ KHz. This
matched the engine signature to that of the rotor such that
the rotor signature sets the PNL value. The octave bard inlet
noise attenuation resulting from this treatment is shown in
Figure 2,36.

A perceived noise level "footprint" for a typical takeoff is
shown in Figure 2.37 for line of constant PNdB. This plot
indicates that the worst noise levels occur along the flight-
path of the aircraft with a perceived noise level of 1i0C

PNdB out to 1200 feet from the point of origin. Tne takeoff
altitude profile and the perceived noise levels at various
distances along the flight path are shown in Figure 2.38.

The takeoff profile assumes a vertical lift-off and acceleration
to climb speed with a climb to altitude at approximately 2500
feet per minute.

The perceived noise level time histories show that at 200

feet a maximum of 112 PNdB is observed 7.5 seconds after
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takeoff. Another factor to be considered in assessing
community acceptance is the duration of high noise lievels. Ir
this case for example the verceived noise exceeds 110 PNdB for
only four seconds at 200 feet. (At each location along the
flight path the noise level increases until the aircraft passes
overhead and then decreases again).

The PNL contours for a typical landing profile are shown in
Figure 2.39. The contours are elongated by comparison with the
takeoff case. This is a result of the low rate of sink used in
the landing profile.

This rate of sink is the maximum permitted by the guidelines
shown in Table 2.5.

To maintain these sink rates, high power levels are reguired
which, in combination with full tipspeed, results ir cne
contours shown.

These contours could be reduced through use of noise abatement
approach techniques available to the low disc loading V/STOL
configurations. These techniques involve vertical flight at
altitudes below 1000 feet with all transitions to or from forward
flight accomplished ahove this altitude. The perceived noise
levels along the flight path and the landing profile are shown
in Fiqure 2.40.

2.1.6 Tandem Helicopter Design Point Costs

The initial or flyaway costs of the design point tandem heli-
copter have been computed using both $90/pound and $110/pound
for the airframe cost. These nrices are shown in Table 2.12.
The initial cos: is $4.166 million at $90/pound and
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TH-100(92.3)

Airframe Cost $9
Airframe $2,
Dynanic System 1,
Engines
Avionics
Total $4,

D210-10858-1

Flyaway Costs

0.00/Lb

199,510
063,040
654,265
250,000

166,815

$110.00/Lb

$2,
1,

$4,

688,290
063,040
654,265
250,000

655,295

Direct Operating Ccsts
Dollars/Seat Mile

Block Distance = 230 St. Miles

Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) S0 110 90 110
Flying Operations
Flight Crew .0081 .0081 .0081 . 0081
'nel and 0il .004¢ .0045 .0045 .0045
Hull Insurance .0019 .0022 .0014 .0015
Total Flying Operations .0145 .0148 .0140 .0141
Direct Maintenance
Airframe - Labor .0013 .0013 .0013 .0013
-~ Material .0010 .0012 .0010 .0012
Engines -~ Labhor .0007 .0007 .0007 .0007
- Material .0009 .a00e .0009 .0009
Dynamic System - Labor .0011 .0011 .0011 .0017
- Material .0017 .0017 .0017 .J017
Total Direct Maintenance .0067 .0069 .00¢€7 .nosge
Maintenance Burden .0047 .0047 L0047 .0047
Total Maintenance .0114 0116 .0114 .0116
Depreciation .00:1 .0105 .0067 .0075
Total Direct Costs .02353 .0369 .0321 .0332

TABLE 2.12. DESIGN POINT TANDEM HELICOPTER - INITIAL AND
DZRECT OPERATING COSTS.
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$4.66 million at $110/pound. The airframe contribution is
$2.199 million and $2.688 million at the respective rates;
the rest of the initial cost being dynamic system, engines
and avionics cost.
The direct operating costs are shown in Table 2.12 for two
assumed aircraft utilizations of 2,500 hours per year and
3,500 hours per year.
At an airframe cost of $90/pound the direct operating cost is
3.53¢ per seat mile for 2,500 hours utilization. This cost
breaks down to be 1.45¢ per seat mile for flying operations,
0.67¢ per seat mile maintenance and 2 depreciation of 0.94¢
per seat mile.
Increasing the airframe cost to 3110/pound increases the
DOC to 3.69¢ per seat mile. Most of the increase is increase
in depreciation costs and the rest is insurance and maintenance
material.
If the aircraft utilization is 3,500 hours per year the DOC
decreases to 3.21¢ per seat mile and 3.32¢ per seat mile for
airframe costs of $90/pound and $110/pound respectively.
The largest contribution to the direct operating cost is the
decrease in depreciation costs per seat mile.
An extended range version of the design point tandem helicopter
has also been considered with fuel tanks increased to give 400
nautical mile range. With the same takeoff gross weight the
extended range version could carry 98 passengers over the

design (20C NM) mission). The aircraft initial cost increases
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a little due to the additional tankage and the range of

DOC's increase to 3.27¢ per seat mile to 3.76¢ per seat

mile as shown in Table 2.13.

Direct operating costs per seat mil: and seat kilometer as

a function of block distance are shown in Figure 2.41 for
the specified combinations of aircraft utilization and air-
frame costs. Figure 2.41 also illustrates the impact of
extending the design range of the TH-100 (92.3) to 46J
statute miles. The increase in costs at the design point
range (230 statute miles) is the result of the loss of 2
available seats due to the increas2d weight empty for +ihe
installation of larger fuel tarks. Although not shown in
Figure 2.41, it should be noted that the larger fuel tanks
will result in a small increase (less than i%) in seat mile
costs at ranges less than 230 statute miles due to increases
in airframe maintenance and degreciation costs. In the
extended range version of the TH-100 (92.3) seat mile costs
show a continuing increase beyond 230 statute miles because
of the loss of available seats due to additional fuel require-

ments at the longer block distances.
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TH-100(92.3)

EXTENDED RANGE VERSION

Airframe Cost $9
Airframe $2,
Dynanic System 1,
Engines
2vionics
Total $4,

Flyaway Costs

0.00/Lb

231,910
063,040
654,255
250,000

199,215

$110.00/Lb

$2,727,89C
1,063,049
654,25°%
250,000

$4,695,19¢

Direct Operating Costs

Dollars/Scat Mile

Block Distance = 230 St. Miles
Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 90 110
Flying Operations
Flight Crew .0082 .0082 .0082 .0082
Fuel and 0il .0046 .0046 .0046 .0046
Hull Insurance .0020 .0022 .0014 .0016
Total Flying Operations .0148 .0150 .0142 .0144
D 'v2ct Maintenance
Airframe - Labor .0013 .0013 .0013 .0013
~ Material .0010 .0012 .0010 .0012
Engines =~ Labor .0007 .0007 .0007 .0007
- Material .0010 .0010 .0010 .0010
Dynamic System ~ Labor .0011 .0011 .0011 .0011
- Material .0017 .0017 L0017 L0017
Total Direct Maintenance .0068 ,0070 .0068 .0070
Maintenance Burden .0048 0043 .0048 .0048
Total Maintenance L0116 .0118 .0116 .0118
Depreciation .0097 .0108 .0069 .0077
Total Direct Costs .0361 .0376 .0327 .0339

TABLE 2.13.

VERSION}

TANDEM HELICOPTER - DESIGN POINT (EXTENDED RANGE
INITIAL AND DIRECT OPERATING COSTE.
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D210-10858-1
2.2 DESIGN POINT TILT ROTOR AIRCRAFT TR-100 .98.2)

The tilt rotor aircraft is essentially a conventional propellei
aircraft in its cruise configuration except that its two wing
tip mounted prop/rotors are larger than conventional propellers.
The prop/rotors tilt to provide vertical 1lift in hover and
transition to cruise flight. This concept has inhereat
qualities which make an attractive compromise Letween the V1IOL
flexibility of the helicopter and the cruise performance of a
conventional aircraft. The low disc loading rotors procvide
good hover lift performance and agile handling qualities in low
speed flight. 1In cruise the prop/rotor propulsive efficiency
is high,which coupled with the high lift/drag ratios typical

of wing borne aircraft, prc ides an efficient cruising vehicle.

2.2.1 Design TR-100 (98.2) - Configuration and Layout

The design point tilt rotor aircraft is shown in Figure 2.42
and a three view of the vehicle is given in Figure 2.43.

Table 2.14 provides a list of the major aircraft dimensions
and characteristics.

This aircraft has a takeoff gross weight of 74,749 pound:.

The rotors are three-bladed and are of hingeless fiberglass
construction. The rotor diameter is 56.3 feet anu the
solidity ratio is 0.089. 1In hover and low speed flight, cyclic
pitch control is applied to the rotor to provide control power
and trim. These rotors are highly twisted (34 degrees) by
comparison with helicopter blades to provide for efficient

operation at high advance ratio as well as in hover. The
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S s gy

S.I. UNITS U. S. UNITS

WEIGHTS

DESIGN GROSS WEIGHT 33,905 Kg 74,749 Lbs

WEIGHT EMPTY 22,710 Kg 50,068 Lbs

FUEL WEIGHT 2,111.9 Kg 4,656 Lbs
NUMBER OF PASSENGERS 100 100
ROTORS

DISC LOADING 73.26 Kg/m2 15 Lbs/Ft?

DIAMETER 17.16 m 56.3 Feet

SOLIDITY 0.089 0.089

BLADE NUMBER 3 3

TWIST 36 Degs 36 Degs

TIP SPEED HOVER/CRUISE

POWER
NO. OF ENGINES
RATED POWER/ENGINE

FUSELACE
LENGTH
WIDTH (MAX)
CABIN LENGTH

WING
AREA
SPAN
TAPER RATIO
CHORD
ASPECT RATIO
AIRFOIL t/c

HORIZONTAL TAIL
AREA
SPAN
TAIL VOLUME RATIO
ASPECT RATIC

VERTIZAL TAIL

AREPR
SPAN

TA1L VOLUME RATIO
ASPECT RATIO

PE.RFORMANCE
NRP CRUISE SPEED
CRUISE ALTITUDE
BLOCK TIME

NOISE

SIDELINE NOISE - 500 FEET/HOVER

TABLE 2.14. DESIGN POINT TILT ROTOR TABLE OF

23.622/165.506 m/s

4
3.091 X 105 watts

28.19 m
4.511 m
17.602 m

69.44 m?
22.28 m
1.0
3,109 m
7.14
0.21

18.75 m?

10.668 m
1.47
5.16

¢ .
W
[,
r-
23

179.54 m/s
4267 m
.742 Hours

98.2 PNdB

775/543 Ft/Sec

4
4145 HP

92.5 Feet
14.8 Feet
57.75 Feet

Feet?
Feet

Feet

204 Feet?
35.0 Feet
1.47
5.16

221 Feet?
17.6 Feet

.159
1.32

349 KTAS
14,000 Feet
0.742 Hours

bt s 4

net

98.2 PNdB

CHARACTERISTICS.
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The rotors and forward rotor transmission tilt; however, the

engines mounted outboard of the tilt package, remain stationary.
This arrangement dces not require the engines to be requalified
for vertical operation and also reduces the inertia of the

tilt package.

The aircraft has four engines, two on each wing tip. The
rotors and engines are connected by means of a cross-shaft
which provides for torque transmission across the aircraft in
event of e¢rgine failure.

The loca*ion of the engines outboard of the tilt package
provides easy access to the engine bays for maintenance or
engine removal.

The span of the aircraft is 82 feet. The wind is straight

and untapered with a NACA 634221 section with a wing setting

angle of 2 degrees relative to the fuselage. The wing aspect
ratio is 7.14.

The wing flaps are full span 30% chord plain flaperons and
are used as both flaps and ailerons. The leading edge is
provided with an umbrella flap which opens for hover and low
speed "helicopter" flight to alleviate the rotor download

on the wing. This device is also used to ensure that the
transition from separated to attached flow over the wing lower
surface occurs simultaneously on both wings.

The empennage is a T tail configuration to reduce the impact
of rotor downwash on the horizontal stabilizer in transition

flight. The horizontal tail volume ratio is 1.47 and the
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vertical tail volume ratio is 0.159,.

The landing gear is a tricycle configuration to provide good
ground handling characteristics and is retractab.e into the
lower fuselage. The undercarriage provides an overturning
angle of 27 degrees.

Cabin layout and passenger accommodation details are shown in
Figures 2.43 and 2.44. The aircraft cabin has two main
entrances located on the port side of the aircraft. The aft
entrance is equipped with an air stair in accordance with
NASA guidelines. The rear entrance is the normal entrance/

exit.

A third Type I entrance is located on the starboard side of
the forward cabin.

Two Type II exits are provided mid-cabin immediately aft of
the baggage/toilet facilities.

A further Type II exit is located aft directly opposite the
main entrance.

The passenger cabin has seats for 100 passengers with an
overall seat width of 21 inches and a seat pitch of 34
inches.

Each pasgenger has under-seat stowage space (9 inches X 16
inches X 23 inches) and overhead rack stowage with lockable
doors. Airvents, individual lights and a folding table are
provided for each passenger in line with normal commercial

aircraft practice.

The cabin has dual 19 inch aisles and the m&in cabin lights

93
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are located over the aisles.
Two coat racks are provided - one forward and one aft with
provisions for 80 passengers.
TwoAlavatories are provided in the center of the cabhin in
line with the baggage stowage area. The location cf the
baggage and toilet facilities in this areas is to keep
passenger seats away from the prop/rotor tip path plane in
cruise to minimize noise and vibration. External baggage
loading doors are provided to give ground crew access if
desired.
The beverage storage and service facilities are located aft.
This unit is located adjacent to the service door/emergency
exit which is larger than the minimum required Type II exit.

Ticketing facilities are located in the same seivice unit.

The cabin attendants' seats are located - one forward against
the forward passenger cabin bulkhead and ciose to the forward
exits, and the second, aft against rear bulkhead and close to
the rear exits.

The aircraft avionics and navigational gear compartment is on
the port side of the aircraft just forward nf th2 cockpit/
cabin bulkhead. The cockpit space provides adequate accommo-
dation for a flight crew of two with excellent visibility. A
third “"observer" seat is provided adjacent to the avionics bay
at the rear of the cockpit. This location provides the
observer good forward vision, visibility »ver the flight crew

stations, and alsc access to the avicnics/non-aids bay ir
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required. The cockpit is provided with two crew emergency
exits - one on each side of the cockpit.

2.2.2 Tilt Rotor Design Point Aircraft - Weight

The design point tilt rotor aircraft design gross weight is
33,905 Kg (74,749 pounds). The weight breakdown in terms of

the structural \nd system categories is shown in Table 2.15.

In the aircraft sizing procedure, weight trend curves developed

at Boeing were used to establish the component and system
weights as functions of configuration, size, flight envelope,
etc. The fixed useful load, fixed equipment and payload is
added and the mission fuel required computed. The aircraft
size is iterated until the mission fuel required equals the
fuel weight available.
The component and system weights are verified in Volume IT by
comparison with trend line cdata.
The calculation of aircraft weight is based upon several
guidelines. The guidelines for the study and their impact
on weight estimation are discussed in Volume II.
The major guideline requirements are summarized below:
1, The maximum takeoff weight and maximum landing
weight shall be the same.
2. Passenger weight shall be 180 pounds (160 pounds
passenygyer and 20 pounds of non-revenue baggage).

3. No revenue cargo is assumed.
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BUEING VEKIUL LUMFANY WEIGHT SUMMARY - PRELIMINARY DESIGN
v D219-10858-1] _
i
[KILOGRAMS § POUNDS i
P 1960.9 4323 . - .
Re-om 12379.5 | 5246 | ST .
TAL 636.8 1404 1 o — ]
SURFACES _636.8 1 1404 | . . - ]
RO-OR
TE 3853.2 | 8495 | ]
B AS'T L e ]
SECONDARY L _ e e ]
| ALIGHTING GEAR GROUP 1356,2 2990 _ B
ENGINE SECTION 1.430.0__y 948 _+ e o ]
PEOPCLSION GRQUP 477“51'78 r_—10476~ B ____: - ]
ENGINE INST'L _1.1184.3 1 2611 | ~ L U
EXHAUST SYSTEM * ——— — e ]
COOLING L B R S o ]
CONTROLS * L o — e
STARTING * __ ]
PROPELLER INST'L *367.4 *810 e
LUBR CATING * . L ~ L ,vj
FUEL 99.3 219 | _ _
ORIVE 3100.8 6836 | B )
Fo!GHT ONTROLS 1835.2 4046 ‘ﬁ o L - o]
Aux. POWER PLANT 288.5 636 . L ) :
INSTRUMENTS 191.9 423 o % -
HYDR. & PLEUMATIC 308.4 680 o OF% PAGE ]
ELE T"R'CAL GROUP 378.3 834 | R\ AQEqur . R
A,10N'CS GROUP 293.9 648 e A
ARMAMENT GROUP ~ I S — e e -
SURN. & EQUIP. GROUP 3273.6 7217 _ S ]
ACCOM. FCR PERSON. N SR -
MISC. EQUIPMENT ) L R . - -
FURN:SHINGS 1 | _ - ~ ]
EMERG. EQUIPMENT = o o _ _
AIR CONDITIONING 612.3 V_jjso» 1 — e ]
ANTISICING GROUP | 25_410 j _.5.604. J - -
LOAD AND HANDLING GP. .- AF—v———~——--w i _ S S - e : — ’—ﬁ
N T R —_— o
~ - - — - e - —
WEIGHT EMPTY 22804.7 50276
CREW | 299.4 660 ]
TRAPPEDLIOMDS ng_g_ | 115 1 o _ ~ N
ENGINE OIL 059.9 | 132 | _ . }
3 ACCOMMODATIONS | 68 0 I I = o .
v [IMERGENCY BQUIPMENT | 23.6 | _ 52 L —_— _
SSENGER ACCOMMO. 415.5 L R S
IPASSENGERS (100) 8164.6 18000 - — .
FUEL 2017.6 4448 - o 4
GROSS WEIGHT 33905.4 74749 [ | |

TABLE 2.15 DESIGN POINT TILT ROTOR WEIGHT SUMMARY.
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4. Accommodation a. = =quipment shall be provided
for a flight crew of two and for one cabin
attendant per 50 passengers. In addition,
some provision shall be made on the flight
deck for an occasional flight observer. Each
crewman plus gear weighs 190 pounds, and each
cabin attendant plus gear weighs 140 pounds.

5. The aircraft sh.ll be equipped with an APU to
meet the needs of starting, ground air condi-
tioning and heeting.

6. The aircraft designs are to be kased on a 1985
operational time period. The Contractor shall
assume the airframe structural weight will be
reduced by 25% by the use of composite materials.

It is to be assumed that by 1985, a system to permit all
weather operation will have been established and that the
V/STOL short haul transport system will use it.

Standard Weight Items

The weights of specified standard items shall be as provided
in Table 2.16.

Fly-By-Wire Control Systems

Fly-by-wire control systems are permitted. Control configured
vehicles (CCV), such as a tailless tilt rotor configuration
are not permitted.

Gearboxes

The rotor gearboxes shall be designed for the maximum rated
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engine power and torque under sea level ctandard day

conditions.

Engines

Rubberized versions of existing engine designs are permitted,
as appropriate for cormercial service in 1985. The engine
specific weight shall be 0.15 pounds per shaft horsepower.
The guideline weight of (544.2 Kg) 1,200 pounds for instru-
mentation, electrical, electronics and auxiliary power unit
installation has been assumed to be the uninstalled weight
and an additional weight of 440.8 Kg (972 pcunds) has been

added to reflect installation.

ITEM WEIGHT

HEELS, TIRES, AND BRAKES COMPANY OPTIMUM

ELECTRICAL (EXCLUDING GENERATING EQUIPMENT)
ELECTRONICS (COMMUNICATION, FLIGHT, AND 1200 LBS

INSTRUMENTS (FLIGHT AND NAVIGATION)

NAVIGATION)
UXILIARY POWER UNIT INSTALLATION

SEATS AND BELTS

PASSENGER: DOUBLE 16 LB/PASSENGER
TRIPLE 16 LB/PASSENGER

CREW SEATS: CABIN CREW 16 LB/CREW MEMBER
FLIGHT CREW 40 LB/CREW MEMBER

LAVATORY 300 LB/UNIT

BEVERAGE ONLY 200 LB TOTAL

AIR STAIR 400 LB

TABLE 2.16. TILT ROTOR WEIGHTS GUIDELINES.
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The cockpit and passenger cabin accommodation weights have

been based upon the Boeing 737 aircraft since it was considered »
that passenger comfort of at least current commercial quality
would be required.

The landing gear was sized to take a rate of sink of 500 feet
per minute and represents 4% of the gross weight.

The fly-~by-+ire control system weights are based upon recent
Boeing experience with fly-by-wire controls in the 347 heli-
copter.

The aircraft structure has been sized to a maneuver load

tactor of 2.5 and an ultimate load factor of 3.75 as recommended
in FAR Part 25.

The aircraft center of gravity lccations and moments of

inertia are given in Table 2.17 for both hover and cruise flight
at the extremes of the weight envelope, i.e., weight empty i
and design gross weight.

The excursions of center of gravity travel are shown for both
hover and cruise flight in Figure 2.45. The center of aravity
envelope for this aircraft assumes that window seats are filled
first, followed by aisle seats.

The aircraft weight resulting from this study is governed to

a large extent by the selection of fixed equipment and fixed
useful load weights as well as payload. In order tc facilitate
reasonable comparison with aircraft designed in other studies
using different weightt, growth factor data are given in

Figure 2.46. This plot provides the change in aircraft gross

100
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WEIGHT EMPTY

GROSS WEIGHT

WEIGHT
CENTER OF GRAVITY*
HORIZONTAL FLIGHT
FUSELAGE STATIOK
WATER LINE
VERTICAL FLIGHT
FUSELAGE STATION
WATER LINE
MOMENT OF INERTIA

HORIZONTAL FLIGHT
Ixx (ROLL)

I (PITCH)
Yy

I (YAW)
2z

VERTICAL FLIGHT
I (L.OLL)
XX

I (PITCH)
PP

I (YAW)
22

22,804.7 Kg
(50,276 LBS)

12.72 M (500.8 IN.)
3.56 M (140.4 IN.)

13.08 M (515.0 1IN.)
3.96 M (156.1 IN.)

1,199,928 Kg M2
(885,1702Slug Ft?)
519,241 Kg M2

(383,037 Slug Ft?)
1,398,099 Kg M?

1,261,339 Kg M2
(930,473 Slug Ft?)

562,151 Kg M2
(415,622 Slug Ft?)
1,512,572 Kg M2
(1,115,805 Slug Ft?)

33,905.4 Kg
(74,749 LBS)

12.77 M (502.8 IN.)
3.26 M (128.5 IN.)

13.12 M (516.5 IN.)
3.53 M (139.0 IN.)

1,290,245 Kg M2
(951,796 Slug Ft2)
558,324 Kg M2

(411,868 Slug Ft?)
1,503,382 Kg M2

1,356,279 Kg M2
(1,000,509 Slug Ft?)

604,464 Kg M?
(446,905 Slug Ft?)
1,626,422 Kg M2
(1,199,790 Slug Ft?)

*FUSELAGE STATION O IS NOSE OF BODY, CENTERLINE OF ROTOR IN
HORIZONTAL FLIGHT IS 4.6 METERS ABOVE WATER LINE O.

TABLE 2,17 . WEIGHT, CENTER OF GRAVITY AND MOMENT OF
INERTIA - DESIGN POINT TILT ROTOR.
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FIGURE 2.46 . TILT ROTOR WEIGHT GROWIH AT CONSTANT
PERFORMANCE AND STRENGTH.
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weight for increasing or decreasing fixed weight items.

2.2.3 Design Point Tilt Rotor - Vehicle Performance

The design point tilt rotor aircraft has been sized to the
mission defined in Table 2.5. This aircraft carries 100
passengers over a short haul range of 371 Kilometers

(200 nautical miles).

A summary of the mission performance is given in Tables 2.18
and 2.19.

The initial phases of the mission including taxi, takeoff,
initial air maneuver and conversion to cruise flight require
193.1 pounds of fuel. The aircraft then climbs to 14,000
feet at an initial rate of climb of 4,227 feet per minute
and a final rate of climb of 2,265. At the end of the climb
segment the aircraft has burned 600.7 pounds of fuel and

has travelled 12.45 nautical miles down range.

The cruise segment is done at 14,000 feet at an initial
aircraft weight of 74,148 pounds and a true airspeed of 349

Krnots. At the end of the cruise segment the aircraft fuel

used is 2,799.8 pounds and the distance traveiled has increased

to 171.82 nautical miles. The aircraft speed at the end of
cruise is 351 Knots TAS.

The descent to 2,000 feet altitude is initially at 4,073

feet per minute rate of descent falling to 2,027 feet per
minute at 2,000 feet altitude. The fuel "sed at the end of
descent amounts to 2,938.4 pounds for a range of 200 nautical

miles.
104
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The final air maneuver or loiter for 1.5 minutes increases

the fuel used to 3,003.9 pounds. The descent to 1,000 feet
altitude is done at an average rate of descent of 2,092 feet
per minute followed by the descent from 1,000 feet conversion
and landing. At touchdown the aircraft has used 3,143.5 pounds
of fuel and after a final taxi segment completes the mission
for 3,157.4 pcunds of fuel.

Table 2.18 also shows the computation of reserve fuel which

is 1,511 pounds for a total fuel load of 4,668.64 pounds.

The mission block time is 0.747 hours.

Hover Performance

The hover performance of the aircraft is shown in Figures 2.47
and .2.48 in terms of the gross weight lifting capability of
the aircraft as a function of ambient temperature.

Data are shown for "all engines operating" (AEO) and also

"one engine inoperative" (OEI) both in and out of ground
effect (IGE,OGE). The power level shown for the all engines
operating case is the normal design takeoff power setting. For
the one engine inoperative data a 9% power increase per 2ngine
has been allowed.

Allowance has been made in the computations for force/weight
ratios of F/W = 1.05 (AEO) and F/W = 1.03 OEI in accordance
with guideline requirements.

The aircraft sizing condition was the OEI case at 90-degrees

F sea level. This point is shown on Figure 2.47 giving a
design condition lift capability of 74,749 pounds of out

ground effect.
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With all engines operating the main drive train sets the
tcrque limit, and is shown to be adequate for sea level,
standard day, all engines operating with a force-to-weight
ratio of 1.05. The torque limit for the main transmission

was set by cruise at normal rated power at 14,000 feet.

The additional 1lift capability at temperatures below the
aircraft sizing condition is not normally used since the OEI

requirement sets the FAA gross weight certification.

The IGE data shown reflect the undercarriage just clear of
the ground condiiion and at the OEI condition 90-degrees F
ground effect provides an additional 10,450 pounds of 1lift.
This extra lift capability will not be used operationally

as payload; however it provides a useful cushion for deceler-
ation or flare of the aircraft on landing, and an additional
initial force-to-weight capability on lift-off (F/W initial

= 1.36 all engines operating IGE at design gross weight).

The lift performance of the aircraft at altitude is shown in
Figure 2.49.

At design gross weight (74,749 pounds) the aircraft can hover
(OGE) at 3,600 feet altitude, all engines operating at an
ambient temperature of standard plus 3l-degrees F and on a

standard day can maintain hover at 7,600 feet fully loaded.
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BASELINE ATRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNdB

STANDARD DAY AND STANDARD DAY PLUS 31°F (+17.2°C)

ALL ENGINES OPERATING
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FIGURE 2.49. EFFECT OF ALTITUDE ON HOVER GROSS WEIGHT
CAPABILITY
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Witl. zero payload the maximum hover altitudes increase to

14,200 feet (standard day plus 31 degrees) and to 17,000 feet
standard day.

The one engine inoperative (OEI) case is shown in Figure 2.50.
The design pcint sizing condition is at sea level 90 and is
again shown at 74,749 pounds. At standard day conditions,

the fully loaded aircraft can maintain hover OEI at 4,000
feet altitude OGE.

Transition Perfcrmanca

Performance in transition depends on how nacelle angle is
scheduled with speed. This is in turn a function of contr_1l
system details. A detailed design of the transition control
scheduling has not been attempted in this conceptual study.
However, the power required to fly the transition trim schedule
shown in Figure 2.71 has been computed and is shown in Figure
2.51., Throughout transition the power required is much less
than the power available at NRP.

Cruise Performance

In cruise flight the nacelles are fully down and the rotors are
operating as propellers. The rotor RPM is decreased to 70%

of the hover RPM.

Data on power required and normal rated power (NRP) available
in cruise are shown for three aircraft weights at 5,000 feet
and 14,000 feet altitude in Figures 2.52 and 2.53. At 5,000
feet altitude the aircraft is transmission limited to 3z4

Knots at design gross weight, all engines operating and to
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332 Knots at operating weight empty.

The one engine inoperative power available allows a cruise
speed of 310 Knots at design gross weight and 320 Knots at
operating weight empty.

With all engines cperating at 14,000 feet and design gross
weight, the aircraft transmission limit and NRP occur simul-
taneously limiting the airspeed to 350 Knots. This condition
was used to size the main rotor transmission.At operating
weight empty this speed can be increased to 360 Knots.

The one engine inoperative case is power limited and a true
airspeed of 306 Knots can be maintained at design gross
weight. This speed increases to 325 Knots at operating weight
empty.

The intersections of the power required - power available data
define the velocity capability of the aircraft at various
altitudes. This data is shown in Figure 2.54.

The aircraft maximum speed at design gross weight is 35C Knots
at 14,000 feet. Below this altitude the aircraft is transmissicn
limit=d and above 14,000 fecet it is power limited. At minimum
flying weight - operating weight empty - the maximum airspeed
is 3€¢0 Knots at 14,400 feet altitude.

The one engine inoperative case is not transmission limited
and results in a maximum low altitude speed of 310 Knots at
4,000 feet.

The speed capability of the aircraft is greater than the 250

Knots EAS restriction at less than 10,000 feetv, and the

117

P



S

D210-10858~1

BASELINE AIRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNdB

STANDARLC DAY

CRUISE RPM

ALL ENGINES OPERATING NORMAL RATED POWER
& ONE ENGINE INOPERATIVE
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FIGURE 2,54. LEVEL FLIGHT CRUISE SPEED ENVELOPE.
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vehicle would be constrained operationally to the 250 Knot

EAS boundary shown in Figure 2.54.

Rate of Climb

The design point tilt rotor aircraft climb capability in

the cruise flight mode is shown for both the design gross
weight and operating weight empty as a function of altitude
in Figure 2.55. Two sets of data are shown for both all
engines operating and one engine inoperative.

At design gross weight (AEO) the aircraft can climb at 4,600
feet per minute at sea level and at normal cruise altitude
14,000 feet can maintain a rate of climb of 3,109 feet per
minute.

In the one engine inoperative case the aircraft can maintain
adequate climb rates in its normal operating range of
altitudes (3,000 feet per minute at sea level and 1,350 feet
per minute at 14,000 feet altitude) at design gross weight.
At lighter weight (e.g., OWE) the climb rates increase and
in some cases require a fuselage angle in excess of 20 degrees.
This is shown for the OWE data in Figure 2.55 and reflects a
probable normal operational maximum rate of climb.

Specific Range

Specific range data in the cruise flight configuration are
shown in Figures 2.56 and 2.57. The AEO case at both 5,000
feet and 14,000 feet altitudes is yiveu in Figure 2.56. At
the design cruise speed of 348 Knots at 14,000 feet and design

gross weight the aircraft achieves 0.0725 nautical miles per
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SPECIFIC RANGE - Km/Kg

L21C-10858-1

BASELINE AIRCRAFT PERFORMANCE
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BASELINE AIRCRAFT PERFORMANCE

TILT ROTOR/100 PASSENGER/98.2 PNdB

DGV = 74,749 LBS/33,905 Kg
MIDWT = 63,749 LBS/28,916 Kg
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pound of fuel. The best
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range cruise speed at this altitude

and weight is 249 knots giving a specific range of 0.092

nautical miles per pound

of 268 knots.

of fuel and a 99% best range speed

The effect of weight is shown by comparing the three sets of

dara for weights between

operating weight empty (OWE) and

design gross weight (DGW). The maximum specific range

achieved at OWE (14,000 feet) is 0.1155 nautical milee per

pound of fuel at a best range speed of 224 knots and the 99%

best range speed ie 239 knots.

Flying at lower altitude (5,000 feet) reduces the specific

range capability of the aircraft {(Figure 2.56).

For example,at the transmission limit speed (DGW} of 322

knots and 5,000 feet altitude the speciiic range is 0.066

nautical miles per pound of fuel and the maximum specific

ranges achieved are 0.0815 and 0.0965 nautical miles per

pound of fuel at DGW and OWE respectively.

With one engine inoperative or one engine shut down the range

performance of the aircra 't improves slightly, Figure 2.57.

This is due to the higher power setting required on the

operating engines which provides a lower specific fuel con-

sumption. At the ncimal
14,000 feet altitude and
and the maximum specific
nautical miles per pound

at 14,000 feet altitude.

rated power limit speed of 306 knots at
DGW the specifi~ range is C.086
rarge achieved are 0.093 and 0.1225

5f fuel at DGW and OWE respectivel-
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The same data are provided (OEI) at 5,000 feet altitude in

Figure 2.57 and 3gain show a reduction in specific range
performance compared with 14,000 feet altitude.

Range Performance

The payload range data for the cdesign mission profile and
reserves with all engires operating is shown in Figure 2.58.
With a takeoff gross weight of 74,749 pounds and 100 passengers
the aircraft has a design range of 200 nautical miles as
shown. The design mission fuel limit defines the range at
zero payload as 234 nautical miles.

The range of the aircraft can be extended by the addition of
extra wing tanks. If the fuel load is increased to 7150
pounds and accounting for additional tank weignt of 180 pounds
the range of the aircraft becomes 400 nautical miles with
payload of 85 passengers and baggage.

Witl de_.ign mission fuel and tanks the range performance of
the aircraft (OEI) has been computed, Figure 2.59.

This data shows an increased range to 250 nautical miles with
a full passenger load due to the improved specific range and
SFC's which result from operating the remaining three engines
at a higher fraction of available power.

Drag

The tilt rotor drag is shown in terms of evuivalent flatplate

area (Fy) in Table 2.21. The method evaluates the drag of

each major aircraft component and sums the components to give

the,vehicle Fg.
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.. TILT ROTOR DRAG SUMMARY
A\ ¥ 4
ITEM DRAG ARE:L fo - FT?
FUSELAGE 10.3914
WING 7.3627
VERTICAL TAIL ‘ 2.2474
HORIZONTAL TAIL | 2.5998
ROTOR NACELLE 1.2946
ENGINE NACELLE 2.6573
MISCELLANEOUS
OIL COOLER MOMENTUM LOSS .3750
AIR CONDITIONING .5000
TRIM .0640
TOTAL DRAG AREA 27.4922

TABLE 2.20. TILT ROTOR BASELINE AIRCRAFT DRAG SUMMARY.
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The design point tilt rotor has an equivalent drag area of

2

27.492 feet® or a gross weight/Fe ratio of 12,885 Kg/m‘

(2,750 pounds per feet?).

~rop/Rotor Performance

The definition of the aerodynamic design of a prop/rotor for

a tilt rotor aircraft is a compromise between the requirenents

for good hover and cruise performance. Design trade studies

have been performed to optimize the rotor design parameters

and are reported in Volume II.

The static and cruise performance of the selected design is

shown in Figures 2.60 and 2.61. 1In hover a maximum figure

of merit of 77% is achieved at a rotor thrust coefficient of

0.010. For 1g hover the rotor design thrust coefficient is
0.0106. The cruise performance is shown as a rotor map

in Figure 2.61 giving Cp and Cp for lines of constant advance

ratio.

2.2.4 Design Point Tilt Rotor - Flying Qualities

Hover

The hover trim data at design gross weight is shown in Figure
2.62. Data are given for three CG locations from 45% MAC in
hover which is equivalent to 42% MAC in cruise to 25% MAC
which is equivalent to 13.8% MAC in cruise. The CG shift
between hover and cruise is due to nacelle tilt.

For nacelles at 90 degrees (hover) the aircraft fuselage
attitude is 0.6 degrees at the aft CG and requires 0.9

degrees cyclic to trim. At the forward CG the fuselage
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trims l.9-degrees riose down and requires 2.4-degrees cyclic
to trim,

Hover trim is possible with nacelle angles greater and less
than 90-degrees, however, the fuselage attitude excursions
increase. The cyclic required for hover trim is relatively
insensitive to fuselage attitude, but is strongly dependent
on CG location since this defines the moment arm for the
weight.

Control Power In lLcver

The aircraft control power in hover is shown in Figures

2.63, 2.64 and 2.65. Pitch control is obtained by the appli-
cation of cyclic pitch. The resulting hub moment and in-plane
force times the distance from the hub to the CG gives a pitch
moment which is used for pitch trim and control. The
sensitivity of pitch acceleration to cyclic pitch is 0.107
radians per second squared per degree of cyclic at design

gross weight of 74,749 pounds. At lower weights, for example
60,000 pounds, the pitch control sensitivity decreases slightly
to .1025 radians per second squared per degree. This effect

is due to the reduced thrust level which decreases the in-plane
force component of the aircraft pitch moment. Six degrees of
cyclic are available for full pitch control.

At design gross weight and a mid range CG the cyclic required
to trim in pitch is -0.9 degrees. The remaining cyclic would
allow a control power of 0.58 radians per second squared. With

a most forward CG and corresponding 60,000 pound weight the

132




D210-10858-1

BASELINE AIRCRAFT
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BASELINE AIRCRAFT
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cyclic required for pitch trim is 2.18 degrees. At this

condition the minimum control power available in pitch is

0.43 radians per second squared.

Yaw acceleration is achieved by differential cyclic pitch.
Cyclic pitch input is phased to obtain the maximum in-plane
force per degree of cyclic. The in-plane forces provide a
couple to yaw the aircraft. Since the in-plane force produced
by the application of cyclic pitch results largely from thrust
vector tilt, the light weight case (i.e., reduced thrust) is
the most critical yaw condition.

At design gross weight with -.9 degrees pitch to trim the
maximum yaw control of 8.15 degrees can be applied which

gives an initial acceleration of 0.388 radians per second
squared. At 60,000 poundas gross weight with 2.18 degrees
cyclic to trim the uavailable yaw cyclic is 7.2 degrees which
provides 0.278 radians per second squared acceleration.

The combined control criteria of .25 radians per second squared
yaw control at 60,000 pounds gross weight requires 6.47 degrees
cyclic and accounting for 2.18 degrees pitch cyclic to trim
the remaining cyclic for pitch acceleration is 0.97 degrees
which provides 0.1 radians per second sguared or 30% of

0.33 radians per second squared as specified in the guidelines.
Roll control is obtained by the use of differential cyclic
pitch. The sensitivity of control power to differential
collective is 0.22 radians per second cquared per degree.

In hover 3.95 degrees of differential collective are available

136



i i PN "

D215-1r358-1
and at design grosa weight full control producea 0.87

radians per second squared all enginaes operating.

Control Respconse In Hover

The control resgponse to control input in hover is given in
Figure 2.66. The control response aata are computed for a
60,000 pound weight with 2.18 degrees cyclic to trim.

With a yaw cyclic input of 6.42 degrees (i.e., an initial
acceleration of 0.25 radians per second sqaured) the aircraft
achieves a yaw angle of 8.5 degrees in one second. In roll,
15.5 degrees of roll can be achieveu with full rol! control.
With 6.47 degrees yaw cyclic control applied and 2.18 degrees
pitch cyclic to trim the pitch cyclic available for control

is 0.97 degrees. This cyclic provides an initial acceleration
of 0.10 radians per second squared which meets the 0.099
radians per second squared required (i.e., 30% of .33 radians
per second squared). The pitch angle achieved in this instance
of combined control is 2.22 degrees in one second (guideline

requirement 30% of 6 degrees = 1.8 degrees in one second).

With 5.4 degrees cyclic pitch control, the pitch rexzi-nse in
one second is 7.4 degrees which again exceed the 6 degrees
quideline regquirement.

Hover longitudinal dyramic stability is shown with no staiility
augmentation in Figure 2.67. There are two roots in evidence,
an aperiodic root whr-h is critically damped with a time to
half amplitude of less than one second and aperiodic root

with an undamped natural frequency of 0.195 radians per second.
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The periodic root is mildly unstable with a time to double

amplitude of much greater than 12 seconds. The aircraft
longitudinal response to a step input is shown in Figure

2.68.,

With no SAS tih.e aircraft meets Level 2 requirements. The
inclusion of a low gain attitude stabilization will provide
damping ir the long period (33 seconds) oscillatory pitch

mode to meet Level 1 requirements. The response in this mode
with an attitude stabilization gain of 0.02 degrees cyclic per
degree attitude is also shown = Figure 2.68.

Figures 2.69 and 2.70 shows the aircraft trim in hover with

a 25 Knot wind for equivalent sideslip angles from zero (head
wind) tc 90 degrees (side wind).

With a 25 knot side wind the aircraft trims with 2 degrees
roll angle at design gross weight, aft CG and 2.5 degrees

roll at 60,000 pounds forward CG. Differential coilective

to trim is 0.4 degrees for the aft CG design gross weight case
and 0.27 degrees for 60,000 pounds witn a forward CC.

At design gross weight and aft CG the cyclic required to trim
is a maximum of 1.9 degrees (right rotor) and at 60,000 pounds
1.9 degrees (right rotor) and at 60,000 pounds forward CG 3.5
degrees cyclic are required on the left rotor. 1In these
calculations the side wind is assumed from the starboard <ide
of the aircraft.

With a 25 Knot side wind the lateral control deflections to

trim are 0.7 inch rudder pedal out of a total available of
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2.5 inches and 0.5 inch lateral stick out of a total
available 5 inches. The control authority available after
trim is more than sufficient to handle a 15 feet per second
gust.

In the worst longitudinal gust case while hovering in a 25 lnot
side wind the trim longitudinal stick is 2.1 inches aft out
of a total of 6 inches available. A 15 feet per second gust
would require an additional 0.93 inches of stick travel, well
within the 6 inches available.

Transition

The transition ccrridor for a tilt rotor aircraft is bounded
at high speed by blade fatigue loads and power limits and at
low speed by stall. The calculation of aircraft tirim and
control for all of the possible trim conditions requires the
detail design of the control systei and is considered beyond
the scope of this conceptual study. However, a typical
transition scheduiz has been com - uted in order to estimate
the control rowers available.

The ly trim data is shown in Figures 2.71 and 2.72 for the
design gross weight aircraft with an aft CG location of 34%
MAC. These trim data assume a flap schedule with nacelle
incidence as shownr in Figure 2.73.

The longitudinal cyclic for full stick travel is shown in
Figure 2.74 as a function of nacelle incidence. The cyclic
pitch per inch of stick is reduced as nacelle incidence is

reduced and terminates in cruise with the cyclic authority
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required for rotor loads control in cruise flight. The

estimated pitch control power in transition is shown in
Figure 2.75 for zero stick trim and for trim with most aft
CG. The minimum pitch controul is 0.4 radians per second
squared at 57 Knots which xceeds the guideline design
requirements of 0.3 radians per second squared.

Differential cyclic and collective are used for yaw control
in transition as shown in Figure 2.76. As the rudder effec-
tiveness grows with air speed these controls are phased

out.

The yaw control power capability is shown for two gross
weights. At the light weight the yaw control power is

0.265 radians per second squared at 40 Knots compared with

a requirement of 0.25 radians per second squared. The ninimum
control power is (.22 radians per second squared at 82 Knots

compared with a requirement of 0.2 radians per second

squared.

Differential collective and cyclic - = < used fer roll
control in transition and are phaised ' :s eron and
spoiler capability grows with airspeed. ™ - 2077, At 40
Knots a roll contiol power of 0.68 radir . - .r recond sgquared

is available (requirement of 0.6) and the m.nimum control
power is 0.465 radians per second squared at 140 Knots which
again exceeds the 0.4 radians per second squared guideline

requirement as shown in Figure 2.78.
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Cruise Flight - Longitudinal Stability and Control

The variation of neutral point for various cruise flight
speeds is given in Figure 2.79 for a range of horizontal
tail volume ratios. The most aft CG in cruise is 34% MAC
which defines a most forward neutral point location of 39%
MAC to provide 5% static margin. The desigr point tilt
rotor horizontal tail volume ratio is 1.47 which gives a
neutral point at 39.5% MAC at 140 Knots, i.e., 5.5% static
margin. As airspeed increases the available static margin
increases.

Trim

Aircraft cruise flight longitudinal trim data are shown in
Figure 2.80 for design gross weight with CG aft (34% MAC) for
sea level, 3,048 meters (10,000 feet) and 4,267 meters
(14,000 feet) altitudes. The angles of attack to trim
decreases as airspeed increases ;uch that at design cruise
speed of 349 Knots at ‘14,000 feet the aircraft trims at

zero fuselage incidence. The design cruise condition requires
1.7 degrees of elevator to trim.

The most forward CG shown on the CG envelope in Figure 2.45
is at 60,000 pounds weight. The cruise trim data for this
weight at 10% MAC CG position are shown in Figure 2.8l.

At the lower gross weight the angle of attack for trim is
reduced and the elevator deflections required for trim are

less. (i.e., more negative).
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Figures 2.82 and 2.83 present the angle of attack and ele-
vator per g for the same gross weight, CG range and
altitudes.
At high airspeeds the elevator required per g is small.
The longitudinal "fecl" system would need some adjustment to
provide acceptable stick force per g. The small stick
deflections per g result in high stick force per inch.

Detailed design of the control system would provide compen-

sation to increase the stick travel per ¢ at high speed.

The pitch rate response to a one degree of step elevator
input at 180, 300 and 380 Knots is shown in Figures 2.84,
2.85 and 2.86. For these data the elevator is stepped at
time equal to one second and the data show the resulting
time histories of pitch attitude and pitch rate. The
elevator effectiveness is lowest at the low speed case. In
one second after control input a pitch attitude of 1.4 degrees
is achieved due to 1 degree elevator. Total elevator travel
is 420 degrees. The pitch rate time constant is low (0.18
seconds to 63% maximum rate) indicating a crisp response to
pilot command. The time constant shortens as airspeed
increases.

These response data are for the aft CG case for which the
short period roots become aperiodic as shown in Figure

2.87. Although this case indicates heavily damped real
roots, the rate of response to pilot command indicat=2d by

Figures 2.84 to 2.86 is still high.
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At 380 Knots the data indicates a normal short period mode

with high damping. For the forward CG case the roots are
periodic and damped well in excess of the recommendations of
AGARD 577.

The phugoid mode is shown in Figure 2.87 and is a long period,
well damped mode.

Figure 2.88 shows the sho-t period frequency as a function of
g's per angle of attack ard the aircraft meets Leve’ i criteria
for both forward and aft CG cases.

Lateral-Directional - Stability and Control

Stability Derivatives

The lateral-directional derivatives due to sideslip are shown
as a function of airspeed in Figure 2.89.

At speeds in excess of 187 Knots the rotors decrease the di-
hedral effect, however, a positive dihedral effect (negative
Cyg) is maintained over the entire speed range. At low speeds
the ratio of Cyng/Cyg = 0.91. As airspeed increases the
increasing Cyg and reduction in dihedral effect tends to
improve the aircraft dutch roll stability and reduce the
stability of the spiral mode.

The rotor contributicn to the sideforce derivative due to
sideslip is large and the resulting total Cyg will require

a relatively large roll angle to compensate in flying a

straight-ground track in sideslip.
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The sideslip characteristics in cruise are shown in Figure
2.90 and this effect is in evidence. The lateral stick per
degree of rudder crosses zero at 285 Knots indicating a
requirement for a small amount of aileron to rudder pedal
coupling to provide normal control direction in sideslip.
The rudder effectiveness is high and decreases slightly with
airspeed.
The roll rate derivatives are shown in Figure 2.91. The roll
rate damping is high (C,p 1.1 to -1.4) due to the influence
of the rotors. The yaw moment coefficient due to roll rate
decreases as airspeed increases.
The yaw rate derivatives are shown in Figure 2.92 and indicate
a high C,, or yaw rate damping. The rotors again contribute
substantially to the yaw damping.
The lateral-directional dynamic stability is shown in Figures
2.93 and 2.94. The dutch roll is stable and well damped at
both aircraft weights and CG's considered. The spiral mode
is slightly unstable at high airspeeds, but has an acceptable
minimum time to double amplitude of 1.85 minutes.
The roll mode time constant is less than one second for all
velocities at sea level and slightly higher at low speeds at
14,000 feet altitude. Roll rate response data are presented
in Figures 2.95 and 2.96. At 180 Knots a roll angle of
14 degrees can be achieved in one second after a step input.

At higher airspeeds the roll rate response increases.
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Gust Sernsitivity and Direct Lift Control

Reduction of gust sensitivity using direct 1ift control is
required to bring the 100 passenger tilt rotor transport with
the limits given in the study guidelines. The situation
without alleviation shown in Figure 2.97 for minimum and
maximum operating gross weights at 10,000 and 14,000 feet
indicates that substantial amounts of 1ift must be dumped,
if the criterion is to be met. It is envisioned that this
will be primarily accomplished by the automatic symmetric
application of spoilers or flaps in amounts prcportional

to the angle of attack change produced by the gust. Further
alleviation would be produced by similar operation of the
rotor cyclic pitch controls; elevator controls would als. be
applied to counteract unwanted pitching moments.

In this study the approximate requirements of the flap and :
spoiler system have been found to be less demanding than the
normal control system requirements, so that no structural
weight penalties are associated with the direct lift

control system. For example, at 55,726 pounds gross weight
(minimum fuel, 10 passenger) at 10,000 feet, at a maximum
cruise speed of 296 Knots EAS, the control applications
required to reduce sensitivity to the criterion level in a

15 feet per second gust are:

FLAP SPOILER
ANGLE 6.8 degrees 12.0 degrees
MAXIMUM RATE 50 degrees/sec 85 degrees/sec

T,
«r
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These may be compared with the design control angles and rates

implied by the time constant criteria of Paragraph 4.1.1.3
of the study guidelines, Flap and spoiler maximum travels
are 20 degrees and 45 degrees respectively and the average
rates implied by the time constant criteria are 6~ degrees
per second for the flaps and 142 deyrees per second for
the spoilers. It is concluded that the only major additional
system requirements and weight penalties would be those
asso~iated with guat sensing equipment and avionics for
signal conditioning and transmission of comr ands to the
control surface actuators. These are estimated to be
approximately 35 pounds.

2.2.5 Design Point Tilt Rotor - Noise

The external noise design criteria for the baseline aircrart
was that the sideline noise at 500 feet in hover at 107 feet
altitude was to be between 90 and 100 PNdB. It is recognized
that the use of PNdB as a means of expressing noise annoyance
may not be a valid comparison between rotary wing aircraft
and conventional jet engined aircraft because of the
different spectra of the two types. The highest sound pressure
levels for the tilt rotor occur at lower frequencies. The
sound pressure level data at 500 feet sideline are shown in
Figure 2.98 as a function of octave band frequency. Using
the NOY weightings the aircraft perceived ncise level at 500

feet is 9£.2 PNdB in hover.
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The components contributing to the overall sound pressure
levels are also given in Figure 2.98, an. over most of the
frequency range, the noise level is set by rotor broadband
noise.

Rotor rotational noise is dominant at the low frequencies,
however, this has only a small impact on the aircraft PNdB

value.

In order that th: PNL be set by rotor noise components,

the engine inle’s were treated to attenuate inlet noise at
high frequencies. The inlet lining is tuned to 4 KHz and

8 KHz in order to match the predicted rotor signature. The
inlet treatment area necessary to achieve the inlet
attenuation shown in Figure 2.99 is 7.5 square feet per
engine.

Contours of constant perceived noise levels are shown in
Figure 2.100 for a typical takeoff. The noise contours are
symmetrical about the flight path axis with the highest noise
levels beneath the flight path. These PNL contours are based
upon a takeoff profile as shown in Figure 2.101 and on the same
figure the perceived noise levels at various points on the
flight path are given as a function of ncise duration. For
example, an observer 200 feet from the point of origin would
perceive 105 PNdB at time zero, 116 PNdB at 7.5 seconds, and
less than 90 PNdB at 20 seconds from takeoff. An observer

at 2,450 feet from the point of origin would never perceive

more than 90 PNdB.
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A similar set of data is shown in Figures 2.102 and 2.103 for

a typical landing case. Again observers on the flight path
are subject to the highest PNL and the perceived noise is

greater for the landing case than for takeoff.
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2.2.6 Tilt Rotor Costs

The design point tilt rotor aircraft initial costs are
tabulated in Table 2.21, The fly away costs have been computed
using 90 and 110 dollars per pound of airframe weight. At

$90 per pound the aircraft initial cost ie $5.15 million and

at $110 per pound it is $5.86 million. The basic airframe
costs are $3.18 millior. and $3.89 million respectively with
dynamic system, engines and avionics costs amounting to
$1.97 million.

The direct operating costs of the aircraft are also shown

in Table 2.21 for utilization of 2,500 hours per year and

3,500 hours per year and for both $90 per pound and $110

per pound airframe costs.

For 2,500 hours per year and $90 per pound the direct

cperating cost is 2.41¢ per seat mile. This cost brecks down
into 0.9¢ per seat mile for flight operations, 0.88¢ per

seat mile for maintenance and 0.63¢ per seat mile depreciation.

At $110 per pound airframe cost, the direct operating cost
rises t6 2.54¢ per seat mile. The increase of 0.13¢ per seat
mile is due to increased hull insurance costs, increased
maintenance costs for airframe material and a higher depre-
ciation cost.

With increased utilization to 3,500 hours and $90 per pound
airframe cost the direct operating cost is 2.19¢ per seat

mile and at $110 per pound airframe cost the direct operating

187



TR-100(98.2) D210-10858-1

Flyaway Costs

Airframe Cost $90.00/1h $110.00/Lb
Airframe $3,179,430 $3,885,970
Dynamic System 949,920 949,920
Engines 774,416 774,416
Avionics 250,000 250,000
Total $5,153,766 $5,860,306

Direct Operating Costs
Dollars/Seat Mile
Block Distance = 230 St. Miles

Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 90 110
Flying Operations
Flight Crew .0044 .0044 .0044 . 0044
Fuel and 0il .0033 .0033 .0033 .0033
Hull Insurance .0013 .0015 .0009 .0011
Total Flying Operations .0090 .0092 .0086 .0088
Direct Maintenance
Airframe - Labor .0013 .0013 .0013 .0013
- Material .0011 .0014 .0011 .0014
Engines -~ Labor .0006 0006 .000¢€ .0006
- Material .0008 .0008 .0008 .0008
Dynamic System - Lakor .0005 .0005 .0005 .0005
- Material . 0008 .0008 .0008 .0008
Total Direct Maintenance .0051 .0054 .0051 .0054
Maintenance Burden .0037 .0037 .0037 .0037
Total liaintenance .0038 L0091 .0068 .2091
Depreciation .0063 0071 .0045 .0051
Total Direct Costs ,0241 .0254 .0219 .0220

R

TABLE 2.21. DESIGN POINT TILT ROTOR INITIAL AND DIPRECT
OPERATING COSTS.
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TR-1090(98.2)
EXTENDED RANGE VERSION

D210-10858~1

Flyaway Costs

Airframe Cost $90.00/Lb $110.00/Lb
Airframe $3,195,630 $3,905,770
Dynamic System 949,920 949,920
Engines 744,416 744.416
Avionics 250,000 250,000
Total $5,169,966 $5,880,106

Direct Operating Costs
Dollars/Seat Mile .
Block Distance = 230 St. Miles

futilization (Hrs/Yr) 2500 3500 '
irframe Cost ($/Lb) 90 10 50 110
klyinq Operations
Flight Crew .0044 .0044 .0044 .0044
Fuel and 0il .6033 .0033 .0033 .0033
Hull Insurance .0013 .0015 .0009 ,0011
Total Flying Operations .0090 .0092 .0086 .0088
Direct Maintenance
Airframe -~ Labor .0014 .0014 .0014 .0014
- Material .0012 .0014 .0012 .0014
Engines =~ Labor .0006 .0006 -0006 .0006
- Material .0006 .0008 .0008 .0008
Dynamic System - Labor .0005 .C005 .000S .0005
- Material .0008 .0008 .0008 .0008
Total Direct Maintenance .0053 .0058 .0053 .0055
Maintenance Burden .0038 .0038 .0038 .0038
Total Maintenance .0091 .0093 .0091 .0093
Depreciation .0064 .0072 .0046 .0051
Total Direct Costs .0245 | .0257 | .0223 | .n232

TABLE 2.22, DESIGN POINT TILT ROTOR (EXTENDED RANGE VERSION)
INITIAL AND DIRECT OPERATING COSTS.

189



D210-~10858-1

*LS0D ONILWY3dO
LOTIYIA NO FONVY ONILVHIJO J0 1LO3d4d -~ $0T°Z JHNOId

SYALIAWOTIN - JFONVH

00L 009 00S 00¥ 00¢ 002 001 0
1 2 8 N A B y . '
SATIW TYOILAVN - TONVH
ooy 00¢ 002 00T 0
om— Y Y — L
LJAVHIOUIVY NOISSIW JdIANILXT e——
—1IYHOYIV NOISSIW NOSISAA -z
—— e
-— - O"‘
j / /I
-€
00S€ S*ZTYT/OTTS — ----mm X,
00S€ p°861/06 § ——-- — v
00s2Z S°ZY2/0TTY —— e — o .
00S2Z ¥°861/06 § —— %\
NOIL¥ZITILN TWI NIV c
SYNOH byx/s a1/3

g°oNd Z°86/4IONISSVYd 00T/9040d ITIL

JONYWIOIHId LAVYOYIV INITISVE

TTIN JLALVILS/3 204

1 4
o~

SHALAWOTIN/d D0d

ﬁm

£t

190



Y Fae

B s

D210-10858-1

cost is 2.30¢ per seat mile. These reductions in DOC are
due to reduced .nsurance and depreciation costs per seat mile’
since these coscs are spread over more passenger miles

per year at the higher level of utilization.
Table 2.22 shows similar data for a modified aircraft with

increased fuel tankage to provide a 400 nautical mile range )
aircraft.

The aircraft fly away costs rise to $5.17 million at $90 per
pounds and $5.88 million at $110 per pound due to increased
aircraft weight. As shown in Figure 2.58 this aircraft can
carry 99 passengers over the design mission and the direct
operating cost data shown in Table 2.22 reflect 100 availakie
seats.

Direct operating costs per seat mile and seat kiiometerx as

a function of block distance are shown in Figure 2.104 for
the specified combinations of aircraft utilizatior and airframe
costs. Figure 2.104 also illustrates the impact of extending
the design range of the TR-100 (98.2) to 460 statute miles.
The increase in costs at the design point range (230 statute
miles) is the result of the loss of one available seat due

to the increased empty weight for the installation of larger
fuel tanks. Although not shown in Figure 2.104 it should be
noted that the larger fuel tanks will result in a small
increase {less than 1%) in seat mile costs at ranges less
than 230 statute miles due to increases in airframe mainten-
ance and depreciation costs. In the extended range version

of the TR-100 (98.2) seat mile costs show a continuing decline
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between 230 and 345 statute miles bhecaus2 the loss of eight
available seats due to additional fuel requirements is offset
by increasing block sveed. Between 345 and 460 statuta miles
the delta block speeds become insufficient to offset the loss

of an additional eight seats, and tlie Svat mile costs begin to

rise.
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3.0 EXTERNAL NOISE CRITERIA TRADEOFF DESIGNS

One of the objectives of the design studies was to examine the
effect of external noise criteria on the desigr. of the two
configurations. This is extremely pertinent since external
noise and community acceptance may become governing parameters
if operations with V/STOL aircraft are to achieve the advan-
tages of potential block time savings for the short haul
traveller. Such time savings will require operation from

high population density urban and suburban areas as well as
major airports. To evaluate design sensitivity to a noise
criteria two additional aircraft of each configuration have
been sized with perceived noise levels at a 500 foot sideline
distance in hover which are 5 PNdB more and less noisy than

the baseline aircraft,

5.1 TANDEM HELICOPTER - SELECTION UF NOISE CRITERIA DESIGNS

The primary design parameters which dictate the rotor rota-
tional and broad band noise are tip speed and blade area or
solidity. Figures 3.1, 3.2 and 3.3 show the effect of these
design parameters on the aircraft gross weight, direct opera-~
ting cost and sideline noise level. In these graphs solidity
is plotted in terms of the ratio o parametric aircraft/c base-

line aircraft, not absolute solidity.

The effect of decreasing solidity and increasing the tip speed
reduces the aircraft design gross weight and increases the

sideline perceived noise level and vice-versa. Decreasing
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solidity also provided decreased direct operating costs. De-
parture from the baseline optimum tip speced of 720 ft/sec

leads to increased direct operating costs.

The noise derivative designs were selected by striking +5 PNdB
lines on the sideline noise rlot and transporting these limits
to the other plots. A minimum solidity requirement was estab-
lished to‘maintain freedom from stall flutter with allowance

for a 1.25 maneuver load factor.

The intersections of these lines define the +5 PNdB aircraft,
the detailed characteristics of which are discussed in this

section of the report.
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3.1.1 Tandem Helicopter Design TH-100 (97.3)

This aircraft has a calculated sideline perceived noise level
of 97.3 PNdAB at 500 feet in hover, 5 PNdB more noisy than the
baseline tandem helicopter.

Configuration and Layout

The characteristics of the TH-100 (97.3) tandem helicopter
design are given in Table 3.1, and three view drawings shown
in Figure 3.4.

The primary changes in the configuration result from an in-
crease in tip speed to 810 feet per second and a decrease in
rotor solidity to 0.07, The aircraft gross weight reduced to
65,843 pounds and the rotnr diameter is reduced to 68 feet

2 inches. The pylon sweep is dictated by the decision to

have zero rotor blade overlap. With a smaller rotor diameter
less aft pylon sweep is required than was the case for base-
line aircraft and this results in a 9 inch reduction in over-
all length.

The cabin and cockpit layout is exactly the same as the design
point aircraft and meets the same requirements for 100 passen-
gers. The design differences are in the rotor and installed
power and transmissions. The installed power decreased to
4590 HP per engine (3 engines).

The solidity of .07 still meets the criterion of 1.25 g's
maneuver capability with no stall flutter which was selected
for the basic aircraft. The reduction in solidity is possible

because of the higher tip speed.
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Tandem Helicopter TH-100 (97.3) Weights

The design gross weight of the +5 PNAB aircraft is 29865.7 Kg 1
R

(65,843 pounds) and the weight empty is 17,304 Ko (38,149

pounds). The aircraft weights have been established in accord-

ance with the same groundrules as applied to the baseline

aircraft. A detailed breakdown of the .ircraft component ard

system weights is presented in Table 3.2.

The major differences in weight are in the rotor and drive

systems, The reduction in diameter and solidity of the rotors

reduce the rotor system weicht to 2745.1 Kg (6052 pounds). The

reduction ii. diameter also allows the distance between rotor

centers to be reduced which coupled with a lighter overall

gross weignt reduces the bending moments in the fuselage

structure and allows a reduction in body weight compared with

the baseline aircraft. !

The propulsion system weight is reduced by virtue of the lower

installed power. The weight of the rotor flight controls is

also reduced since the rotor size and inertias are smaller.

The fuel required to fly the design mission is reduced since

the engines are cperating at a higher fraction of maximum

power in cruise flight.

The aircraft center of gravity locations and principle momerts

of inertia are given in Table 3.3.
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WEIGHT EMPTY GROSS WEIGHT
WEIGHT 17,304 Kg 29,865.7 Kg
(38,149 Lbs) (65,843 Lbs)
CENTER OF GRAVITY*
Fuselage Station 15.26 M (600.6 14.53 M (571.9
Inches) Inches)
Water Line 3.60 M (l41.6 2.83 M (111.6
Inches) Inches)
i MCMENT OF INERTIA
I (Roll) 13,068.3 Kg M® | 14,506.2 Kg M2
; XX (92631.0 Slugs 102690.7 Slugs
% Ft<) Ft<)
I,y (Pitch) 1,438,857.3 Kg 1.597,175.6 Kg
M2 (1,060,400.4 M2(1,l775076.8
Slugs th) Slugs Ft<)
I,,(Yaw) 1,389,510.0 Kg 1,542,398.3 Kg
M2 (1,023,032.7 M2 (1,133,707.4
Slugs Ft<) Slugs Ft<)
*FUSELAGE STATION O IS AT NOSE OF BODY - CENTER LINE OF
FORWARD ROTOR 5.0 METERS ABOVE WATER LINE.
ng

TABLE 3.3 . WEIGHT,CENTER OF GRAVITY AND MOMENT OF INERTIA -
+5 PNAB HELICOPTER.
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Tandem Helicopter - TH-100 (97.3) - Vehicle Performance

The +5 PNdB tandem helicopter has been sized for 100 passengers
over the 200 nautical mile range with the same mission defini-
tion as the baseline aircrafi. Tables 3.4 and 3.5 shows a
summary of the mission performance and detailed calculation
results are included in Volumre II.

The aircraft takeoff gross weight is 29,860.8 Kg (65,843
pounds) with a fuel load of 3,494.3 Kg (7,705 pounds). The
taxi, takeoff and initial air maneuver requires 31 Kg (113
pounds)of fuel. 1In Tables 3.4 and 3.5 the initial air maneuver
is included with the takeoff. The aircraft th=»n climbs to
altitude (5,000 feet) for a range benefit of 9.1 Km (4.9
nautical miles) using 126 Kg (231 pounds) of fuel to climb.

The mission cruise is done at normal rated power at 5,000

feet at an average airspeed of 145 knots. The cruise segme:t
fuel is 2,747 Kg (5,053 pounds) of fuel for a range of

367.3 Kg (198.2 nautical miles).

The remaining 0.8 nautical miles is accomplished in the descent
to 2,000 feet at a rate of descent of 15.6 m/s (3,078 feet

per minute).

The remainder of the mission is an air maneuver at 2,000 feet,
descent, landing and taxi. The missior fuel used is 3199

®g (5,598 pounds) with 1,204 Kg (2,107 pounds) reserve fuel.
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Hover Performance

The hover performance of the helicopter is shown in Figures
3.5 and 3.6 in terms of sea ievel gross weight lifting capa-
bility as a function of ambient temperature.

Data are shown for all engines operating (AEO) Figure 3.5,
and one engine inoperative, both inground effect (IGE) and
cut of ground effect (OGE). The power levels are given on
both figures. For the all engines operating data the three
engine takeoff power is shown, for the OEI data two engines
operating at 9% increased power are shown.

The takeoff gross weights were derived using a force to weight
ratio (F/W) of 1.05 for all engines operating and F/W of 1.03
for OEI conditions in compliance with the study guidelines.
The aircraft sizing conditions were OEI at sea level 90°F and
is indicated in Figure 3.6 giving a design gross weight of
29,866 Kg (65,843 pounds) out uof ground effect.

Transmission rating of the vehicle allows full takeoff power
from all three engines to be used at sea level standard. This
condition is indicated in Figure 3.5.

Hover gross weight capability for altitudes up to 20,000 feet
is shown in Figures 3.7 and 3.8. Data are presented for IGE
and OGE conditions on standard day and standard day plus 31°F
(17.2°C), ambient conditions at sea level standard day plus
31°F is 90°F.

Figure 3.8, the OEI date, indicates the design point sizing

condition. On a standard day the vehicle is capable of CGE
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NOISE DERIVATIVE AIRCRAFT
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/97.2 PNdB
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D210-10858-1
takeoffs at altitudes up to 5,000 feet with full passenger

load of 100 passengers,
All engine operating performances given in Figure 3.7 indicate

that OGE takeoffs can be made up to 11,000 feet on a standard

day plus 31°F.

213



[Reas

D210-10858-1

Performance in Forward Flight TH~100 (97.3)

The power required in trimmed level flight is shown in

Figure 3.9 at sea level for three aircraft weights. The power
available at normal rated power (NRP) with all engines opera-
ting and one engine inoperative are superimposed. At zero
forward speed the aircraft can hover at less than normal
rated power with all engines operating. The intersections of
the power required ard power available lines give the maximum
cruise speed limits for various weights. At design gross
weight the aircraft cruises at 146 knots with all engines
operating. With onc engine inoperative a cruise speed of 130
knots can be maintained at design gross weight.

These data are also shown for 5,000 feet altitude, standard
day in Figure 3.10. Even at this altitude the aircraft can
maintain hover at less than NRP at design gross weight. At
5,000 feet altitude the maximum cruise speed at normal rated
power and design gross weight is 141 knots and 165 knots at
operating weight empty. With one engine inoperative the air-
craft can maintain 118 knots and can fly as slow as 50 knots
at NRP and design gross weight.

The aircraft maximum cruise speeds are shown as a function of

altitude ir Figure 3.11.

Climb Performance

The aircraft rate of climb data are shown in Figure 3.12. At
design gross weight the rate of climb capability all engines

opecsating is 3,200 feet per minute falling off to 2,450 fret
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/97.2 PNdB
STANDARD DAY CRUISE RPM

e TG AR N

DGW = 65,843 LBS/29,966 Kg
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NOISE DERIVATIVE AIRCRAFT
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DGW = 65,843 LBS/29,866 Kg
MIDWT = 52,991 LBS/24,036 Kg
OWE = 40,139 LBS/18,209 Kg

+5 PNdB

ALTITUDE - 5000 FEET (1524 m)

STANDARD DAY

10X 106
12 x 103
NRP (AEO)
8
10
2
%] o]
& {5
Z6lns
3 B 1)
NKP (OE
C 12 NKP (OF°
g |k )
AP
[a ] 0
212
e 84\
REQ'D
2
2

T00 200
AIRSPEED ~ KNOTS

FIGURE 3.10. CKUISE PERFORMANCE - POWER REQUIRED/AVAILABLE.

216

K



e et e« fxw‘tmm“

D210-10858-1

NOISE DERIVATIVE AIRCRAFT
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per minute at design cruise altitude (5,000 feet). With one
engine inoperative a rate of climb of 1,350 feet per minute
can be achieved at sea level and 950 fert per minute at 5,000
feet altitude.
The rate of climb is sensitive to aircraft weight and at
operating weight empty a maximum rate of climb of 6,770 feet

per minute can be achieved at sea level.
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Range

The specific range performance is given at both t£ea level and
5,000 feet altitude for all engines operating in Figure 3.13
and for one engine inoperative in Figure 3.14. At sea level

a maximum specific range of .038 nautical miles per pound of
fuel is obtained a*t design gross weight at an airspeed of 133
knots. At NRP the specific range ror the same weight and
altitude reduces to .037 nautical miles per pound of fuel. At
5,000 feet the NRP specific range is marginaily increased to

. 0375 nautical miles per pound of fuel at design gross weight.
The maximum specific range is 0.949 at 5,000 feet . -itude

and minimum weight at an airspeed of 128 knots.

With one engine inoperative the raximum specific ranges .m-
prove because of the increased power setting on the remaining
two engines with an attendant reduction in specific fuel con-
sumption.

The payload range performance of the aircraft with all engines
operating is specified by the mission definition, shown in
Figure 3.15. With basic mission fuel and no payload the range
capability increases to 243 naut cal miles. The extended range
condition shown on Figure 3.15 is the same aircraft with
additional tankage for a 400 nautical mile range. The addi-
tional tank weight reduces the payload by the equivalent of 2
passengers at 200 rautical miles and the aircraft can operate
to 400 nautical miles with 70 passengers, while mainteiring

the basic mission reserve fuel.
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NOISE DERIVATIVE AIRCRAFT
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/97.2 PNdB
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D210-10858-1
With one engine inoperative the range performance, Figure 3.16,

of the basic TH-100 (97.3) design improves to 230 nautical |
miles by virtue of improved specific range as shown in Figures

3.13 and 3.14.

S1ABILITY AND CONTROL TH-100 (97.3)

The guideline requirement to have positive static stability is
achieved in this case by delta 3 in the forward rotor head as
was the case for the baseline aircraft. Figure 3.17 shows M,
for the unaugmented aircraft with a negative M, at speeds in
excess of 130 knots at all weights.

The lateral-directional stability is positive at all speeds
(i.e., + ve Ng ) Figure 3.17.

Table 3.6 summaries the derivatives fcr this aircraft and com-
pares them against the baseline tandem helicopter design. The
control derivatives are slightly lower for this aircraft than
is the case for the baseline aircraft. This means that to
achieve the same control pcwers slightly larger control ranges
(i.e., degrees of blade angle at the rotor 1) would be re-
gquired. Alternately a slight reduction in coatrcl power could
be accepted since in no case are the control powers available
less than the guideline requirements.

There is no significant difference between the damping deriva-
tives for the TH-100 (97.3) design and those for the baseline
aifcraft indicating that the control response data will not be
significantly affected for the unaugmented aircraft. The

difference in the damping derivatives are small in comparison
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AIRCRAFT v ) 40 60 120 | 150 _
BASELINE | L, .433 .410 .407 .405 .406
W=67,175 S

M g .182 .181 .213 .241 .257
* Nep .170 .155 .151 .149 153 |
Zse -7.33 | -6.65 |-7.67 | -9.03 -9.65
CONTROL DERIVATIVES
Ly -.70 -.80 -.90 -.84 -.70 | ™
Mg -.70 -.92 J]-1.19 | -1.27 -1.34 | &
N, -.07 | -.05 | -.04 { -.05 -.07 |~
o
Zy -.22 -3.2 -.43 -.50 -.52 |2
" DAMPING DERIVATIVES 0
&
My FwD 0 .15 .03 -.49 -1.12
AFT 0 .28 .29 ~.05 -.49
NgFwD 0 .04 .15 .33 .52
AFT 0 .03 .12 .27 .42
STABILITY DERIVATIVES
NOISY L, .403 | .384 .384 .386 2390 ([ @
W=65,845 S
Msp .180 | .175 .203 .224 232 | @
Ngp .164 | .149 .145 .144 ~148 | @
Z, -6.93 |-6.25 | -7.17 -8.40 | -8.92 | @
c : .
Lp -.73 | -.83 | -.92 -.86 -.12)1%
Mg -.67 | -.83 | -1.04 -1.07 ~1.09 ‘o’
N, -.06 | -.04 -.04 -.05 -.osj o
-l
Z, -.22 | -.32 | -.41 -.47 -.46 | LG
' | 4
MaFwp | 0 .21 .15 -2 -.87)
APT 0 .33 37 -.1%6 -.29 @
Ngrwp | © .04 .14 .31 541
AFT 0 .03 .11 .26 .44

@ ROLL - RADS/SECZ/INCH @ R}TE DERIVATIVES - RADS/SECZ/RAD/SEC

(® PITCH - RADS/SEC2/INCH (® FT/SEC?/FT/SEC

G vaw - maps/sic?/mncy @  STABILITY DERIVATIVES

® VERT - FT/SEC2/INCH

TABLE 3.6 . STABILITY & CONTROL DERIVATIVES FOR +5 PNdB
ALTELRNATE CONFIGURATION AT DESIGN GROSS WEIGHT.
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to the damping provided by the automatic flight control sys-
tem gains of

Mg

AMa

2,0 tc 2.5 rads/sec2/rad/sec

3.0 to 5.0 rads/sec?/rad

With the system on the pilot would not recognize the diffz2rence

between this aircraft and the baseline tandem helicopter.

Tandem Helicoptesr. TH-100 (97.3) - Noise

The 500 foot sideline noise level of this aircraft is 5 PNdB
aoisier than the baseline tandem helicopter at 97.3 PNdB. The
sound pressure level spectrum and NOY weighting for the hover
case are shown in Figure 3.18. The major component of noise
is the rotor broad band noise as was the case for the baseline
tandem helicopter. The engine inlets are assumed to be treated
with noise attenuation linings in the same manner as the base-
line aircraft. The primary contribution to the increased
percieved noise level is due to the increased tip speed.

The PNL contours for a typical takeoff are shown in Figure
3.19 and the takeoff trajectory and time histories of per-

cieved noise along the flight path are shown in Figure 3.20.

Similar dataare given for the landing case in Fiqures 3.21

and 3.22.

TH-100 (97.3) Costs

Direct operating costs per seat mile and seat kilometer as a
function of block distance are shown in Figure 3,23 for the

specified combinations of aircraft utilization and air<rame
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costs. Figure 3.23 also illustrates the impact of extending

the design range of the TH-100 (97.3, to 460 statute miles.

The increase in ccsts at the design peint range (230 statute
miles) is the result of the loss of 2 available seats due to
the increased empty weight for the installation of larger fuel
tanks. Although not shown in Figure 2.23 it should be noted
that the larger fuel tankc will result in a small increase
{(less than 1%) in seat mile costs at i1anges less than 230
statute miles due to increases in airframe maintenance and
depreciation costs. In the extended range version of the
TH-100 (97.3) seat mile costs show a continuing increase beycnd
230 statute miles because of the loss of available seats due to
additional fuel requirements at the longer block distances.

Only 70 seats are available at 460 statute miles.

Ta.le 3.7 shows the flyaway costs for the basic TH-100 (97.3)
at $90.00 and $110.00 per pound of airframe. A breakout of
the direct operating cost factors for the TH-190 (97.3) at
230 statute miles is shown in Table 3.7. Flyaway and direct
o_erating cost breakouts for the extended range version of
the TH-100 {(97.3) are shown in Table 3.8.

3.1.2 Tandem Helicopter Design TH-100 (87.1)

The TH-100 (87.1) design has a calculated sideline perceivead
noise level of 87.1 PNAB, 5 PNdB less noisy than the baseline

tandem rotor helicopter.
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TH-100 (97.3) D210-10858-1

Flyaway Costs

Airframe Costs $90.00/Lb $110.00/Lb
Airframe $2,144,700 $2,621,300
Dynamic System 958,080 958,080
Engines 629,220 629,220
Avionics 250,000 250,000
Total $3,982,000 $4,458,600

Direct Operating Costs
Dollars/Seat Mile
Block Distance = 230 St. Miles

Utilization (Hrs/Yr) 2500 3500
Airframe Cost (S$/Lb) 90 110 90 110
Flying Operations
Flight Crew .0092 .00¢92 .0092 .0092 |
Fvel and 0il .0050 .0050 .0050 .0050 g
Hull Insurance .0021 .0024 .0015 .0017 |
Total Flying Operations .0163 .0166 . 0157 .0159
Direct Maintenance
Airframe - Labor .0014 .0014 .0014 .0014
- Material .0010 .0012 !.0010 .0012 ;
Engines - Labor .0008 .0008 ' .000¢ .0008
- Material .0010 .0010 ' .0010 .0010 i
Dynamic System - Labor .0011 | .0011 ' .0011 | .0011
- Material ! .0017 | .0017 ! .0017 | .0017
. ~.al Direct Maintenance .0070 .0072 .0070 .N072
Maintenance Burden .0050 .0050 .0059 .0050 ;
Total Maintenance .0120 | .0122 | .0120 | .01°2 !
Depreciation .0103 .0114 .0073 .0081
Total Direct Costs .0386 ,0402 .0350 0362 !

PP
‘ TABLE 3.7. INITIAL AND DIRECT OPERATING COSTS - +5 PNdB HELICOPTER.
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TH-100(97.3)
EXTENDED RANGE VERSION
D210-10858-1
Fiyaway Costs

Airframe “Jsts $90.00/Lb $110.00/Lb
Airframe $2,175,300 $2,658,700
Dynamic System 958,080 958,080
Engines 629,220 629,220
Avionics 250,000 250,000
Total ' $4,012,600 $4,496,000

Direct Operating Costs

Dollars/Seat Mile
Block Distance = 230 St. Miles

Utilization (Hrs/Yr) 2500 3500

Airframe Cost ($/Lb) 90 110 920 110
Flying Operatiocons
Flight Crew .0094 . 0094 .0034 .0094
Fuel and 0Oil .0051 .0051 .0051 .0051
Hull Insurance .0022 .0024 .0016 .0017
Total Flying Operations .0167 .0169 .0161 .0162
Direct Maintenance

Airframe - Labor .0014 .0014 .0014 .0014
- Material .0010 .0013 : .001l0 .0013
Engines - Labor .0008 .0008 | .0008 .0008
- Material .0010 .0G10 .0010 .0010
Dynamic System - Laber .0012 .0012 - .0012 .0012
: - Material .0018 .0018 ° ,0018 .0018
Total Direct Maintenance .0072 .0075 | .0072 0075
Maintenance Burden 0051 .0051 .0051 0051
Total Main.enance .0123 .0126 .0123 .0126
Depreciation .0105 .0117 .0075 .0084
Total Direct Costs .5395 .0412 .0359 ,0373

TABLE 3.8.
HELICOPTER -

(ZATENDED RANGE VERSION).
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Configuration and Layout

This aircraft has the same fuselage, cabin and cockpit arrange-
ment as the baseline tandem helicopter aircraft. The major
differences are in the rotor and drive system which result

from reduced rotor tip speed and increased solidity required

to reduce the external noise by 5 PNdB.

The rotor tip speed has been reduced to 640 feet per second re-
quiring an increased rotor solidity to maintain 1.259g maneuver
capability in crvise. The associated increase in aircraft
weight required an increased rotor diameter to 22.1 M (72.5
feet) to maintain the design disc loading of 43.94 Kg/m2

(9.0 pounds per feetZ2).

The drive system configuration is the same as for the baseline
aircraft except that the power and torgues required are in-
creased. The installed maximum power/engine has increased to
4,294 X 16% watts (5,759 SHP).

The major characteristics of this aircraft are shown in

Table 3.9 and the threeview dcawing in Figure 3.24.

The increased rotor diameter required the aft pylon of the
aircraft to be swept morc¢ than the baseline aircraft to main-
tain zero overlap. This results in an increased overall

length of the aircraft.

Weights
The design gross weight of the TH-100 (87.1) design is
33,668.6 Kg (74,227 pounds), an increase of 3198.7 Kg

(7052 pounds) over the beseline aircraft. The aircraft
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weight breakdown is given in Table 3,10, This increase in
waight is caused by the larger rotor diameter and solidity
which increases the rotor syctem weight to 3,729.9 Kg (8,223
pounds). The body weight increases as a result of the increase
in the distan.. between the rotor hubs since the bending
moments carried by the fuselage structure increase requiring
a higher structural strength and weight. The landing gear
weight is governed by the change in aircraft weigut and grow-
with the aircraft to 1,346.3 Kg (2,968 pounds). The engine
section weights are increased owing to the increased engine
size. The increased installed horsepower and weight reauires
a largev tra smission reflected by the increased drive system
weight.
The increased flight controls weight is a function of the in-
crease in rotos size aind weight since larger upper controls
are required.
The fixed weight items such as passenger accommodations, emer-
gency equipment are the same as the baseline aircraft.
These weight changes result in an empty weight of 21,105.5 Kg
(46,530 pounds). The mission fuel load, including reserves is
3,496.2 Kg (7,708 pounds).

The principle inertias and CG lccations are given in Table

3.11.

Tandem Helicopter - TH-100 (87.1) - Vehicle Performance

This quiet tandem heli. 'pter is designed to fly the same

mission as the baseline aircraft and a summary of its mission
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]

WEIGHT

CENTER OF GRAVITY*
FUéELAGE STATION
WATER LINE

MOMENT OF INERTIA

I (ROLL)
XX

I (PITCH)
Yy

I {YAW)
22

WEIGHT EMPTY

GROSS WEIGHT

21,105.5 Kg
(46,530 LBS)

15.25 M (600.5 IN.)

3.59 M (141.4 IN.)

15,939.4 Kg M2
(11, 746.9 Slug Ft?)

1,754,961.7 Kg M?

(1,293,361.1 Slug
Ft2)

1,694,773.0 Kg 112

(1,249,003.6 Slug
Ft?)

33,668.6 Kg
(74,227 LBS)

14.53 M (572.0 1IN.)

2.83 M (111.4 1IN.)

17,139.0 Kg M2
(12,631.0 Slug Ft2)

1,887,055.3 Kg M?

(1,390,710.7 Slug
Ft2)

1,822,336.4 Kg M2

(1,343,014.5 Slug
Ft2)

*FUSELAGE STATION O IS AT NOSE OF BODY, CENTERLINE OF FORWARD
ROTOR 5.0 METERS ABOVE WATER LINE.

TABLE .11 .

WEIGHT, CENTER OF CRAVITY AND MOMENT OF

INERTIA - HELICOPTER =~S PNdB.
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performance is given in Tables 3.12 and 3.13.

The taxi, takeoff and initial air maneuver r::quire 64 Kg

(143 pounds) of fuel. As before, the initial air maneuver is
included with the takeoff in Tables 3.12 and 3.13., The climb
to altitude is done at 10.4 m/s (2,047 feet per minute) and
requires 91 Kg (200 pounds) fuel for a range credit of 7.2 Km
(3.9 nautical miles). The cruise altitude is 5,000 feet. The
cruise segment is done at an average speed of 93.6 m/s (182
kuots). The cruise segment fuel is 2,277 Kg (5,021 pounds)
for a total range credit of 366.1 Km (197.6 nautical miles).
The remainder of the design range is achieved in a descent to
2,000 feet altitude at an average rate of descent of 12.0 m/s
(2,36n feet per minute). The final air maneuver, descent,
landing and taxi complete the mission for a total fuel weight
of 2,540.2 Kg (5,601 pounds). The reserve fuel is calculated
based on fuel for 50 nautical miles and 20 minutes loiter.
This increases the fuel weight to a total of 3,469.2 Kg (7,708

pounds) .

Hover Performance

The effect of ambient temperat.re on hover lift capability is
shown in Figure 3,25 and 3.26 for both all engines operating,
and one endine inoperative both in and out of ground effect.
The sizing condition with one engine inoperative (VUEI) at sea
level, 90°F, defines the aircraft design gross weight and
installed power. The higher 1lift capability at wer ambicnt

temperature or due vo ground effect or all engines operating
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/1U0 PASSENGER/87.1 PNdB
ALL ENGINES OPERATING

149x106 F/W = 1.05
W
& TORQUE LIMIT
2 134 — 3———
z 17 x10
(<%
t o
w leqn
= .
(@] Hsg
[o¥ ll_gl..a
:
& 10 -
13
559 120,103
x103 | TORQUE rrmrq
2504110
] foo] 1
< &)
£ TO , %
5 | oL
H ———
§45ﬁ§°¢
9
:g 8 C@ \
&
© Q0
4045
O
4
(&)
8 O ——
3C 50 70 90 ' 10 130
AMBIENT TEMFERATURE - DEGREES F
[ A — el
0 15 30 45

AMBIENT TEMPERATURE - DECREES C

FIGURE 3,25. EFFECT Of AMBIENT TEMPERATURE ON SEA LEVEL H(.VER
PERFORMANCE -~ -5 PNdB HELICOPTER.
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NGISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/87.1 PNdB
ONE ENGINE INOPERATIVE

-5 PNdB
14¢x103 F/W = 1.03
m i1
£ 104x106
g
' a
9
g 512
I
[aV]
I
2 IFio
5
o 7
105 kx103
45-'x103
LE o
< |38 NG
] 40 i
% %85}
a 3540
(o} O
75F
& £ DES PT
30- 65 ‘I‘_ i_ 4 L q
30 50 70 90 110 130
AMBIENT TEMPERATURE - DEGREES F
j - L 1. g
0 15 30 45

FIGURE 3.26.

X

AMBIE. T TEMPERATURE - DEGREES C

EFFECT OF AMBIENT TEMPERATI'KE ON SEA LEVEL HOVER
PERFORMANCE - -5 PNdB LELICOPTER
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provides additional force to weight capability in hover and
takeoff. The increased takeoff weight capability can not be
used as such under FAA certification groundrules since the
increased weight would reduce the maneuver load factor of the
aircraft.

Figures 3.27 and 3.28 show the effect of altitude on hover
performance both all engines operating and one engine inopera-
tive., With all engines operating on a standard day the fully
loaded aircraft can maintain hover up to 12,500 feet altitude
at takeoff power. Increasing the ambient temperature by 31°F
reduces the altitude to 9,000 feet. With one engine inopera-
tive the maximum altitude for hover on a standard day is

4,450 feet, and at standard plus 31°F the aircraft hovers at

sea level OEI a2t design gross weight.

Performance in Forward Flight

The power required to maintain straight and level flight at
both sea level and 5,000 feet altitude is given in Figures
3,29 and 3.30, for standard day conditions. 2t both sea level
and 5,000 feet the aircraft can maintain hover at less than
NRP all engines operating. As speed increases the power re-
quired decreases as shown and rises as the propulsive force
requirement increases until it reaches the power available.
This intersection defines the maximum cruise speed at normal
rated power. At design gross weight the maximum cruise speed
is 180 knots at sea level and 5,000 feet AEO. With one engine

inoperative the aircraft can maintain a cr:ise speed of 167

2590
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/87.1 PNdB
STANDARD DAY CRUISE RPM

DGW = 74,227 LBS/33,669 Kg
MIDWT = 61,374 LBS/27,839 Kg
OWE = 48,520 LBS/22,008 Kg
-5 PNAB
— ALTITUDE - SEA LEVEL
12X 16 x 10° "STANDARD DAY
168
NRD (REO)
141
10
12
0'.18w
E 10] NRP (OEI)
z | & -
¢ 1o
n
- [
5 |4
o jE 6
4‘é
E4
e
4
REQ'D
2.
“0 100 200

FIGURE 3,29

AIRSPEED - KNOTS

CRUISE PERFCRMANCE ~ POWER REQUIRED/AVAILABLE.
~-¢ PNdB HELICOPTER
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/10C PASSENGER/87.1 PNdB

STANDARD DAY CRUISE RPM

DGW = 74,227 LBS/33,669 Kg
MIDWT= 61,374 LBS/27,839 Kg
OWE = 48,520 LBS/22,008 Kg

-5 PNAB

ALTITUDE - 5000 FEET (1524 m)

14 x 103 )
)
10x106 NRP (AE
12
8
10
g
2] O
B4 (Y
B el K8
g£12
Q
. kK
g |5
& |56
Dc4m
[
Bk
o |o
S Rl REQ'D
2
2L
0 100 200

TRUE AIRSPEED - KNOTS

FIGURE 3.30. CRUISE PERFORMANCE - POWER REQUIRED/AVAILABLE.

-5 PNdB HELICOPTER
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knots at sea level and 161 knots at 5,000 feet altitude. At

lower weights the cruise speeds increase as shown in Figures
3.29 and 3.30.
The maximum cruicsc speeds are plotted as a function of alti-

tude in Figure 3.31.

Rate of Climb

At design gross weight, all engines operating, the aircraft
has a marimum rate of climb of 3850 feet per minute at sea
level as shown in Figure 3,32, At design cruise altitude
(5,000 feet) a rate of climb of 3,330 feet per minute can be
achieved. With one engine inoperative a rate of climb of
1,93C feet per minute can be achieved at sea level dropping
to 1,440 feet per minute at 5,000 feet altitude. The maximum
rate of climb is obtained at operating weight empty at sea
level. With all engines operating a rate of climb of 7,110

feet per minute can be achieved at this condition,

Specific Range

The specific range performance, all engines operating, is shown
in Figures 3.33 and 3,34 at sea level and 5,000 feet altitude.
The maximum specific range achieved at design gross weight is
.039 nautical miles per pound of fuel at sea level, and .042
nautical miles per pound of fuel at 5,000 feet. At normal
rated power these values decrease tuv 0.0365 and 0.038 nautical

miles per pound of fuel respectively.
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/87.1 PNdB
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-
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21
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3
64 20pX10

STANDARD DAY CRUISE RPM
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FIGURE 3,31.
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/87.1 PNdB

CRUISE RPM STANDARD DAY
ALL ENGINES OZERATING
-5 _PNdB
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FIGURE 3.33. CRUISE PERFORMANCE - SPECIFIC RANGE.

-5 PNAB HELICOPTER - AEO.
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NOISE DERIVATIVE AIRCRAFT

TANDEM HELICOPTER/100 PASSENGER/87.1 PNAR
STANDARD DAY CRUISE RPM
DGW = 74,227 LBS/33,699 Kg
MIDWT = 61,374 LBS/27,839 Kq
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FIGURE 3.34 CRUISE PERFORMANCE - SPECIFIC RANGE.

-5 PNdB HELICOPTER - JEI.
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With one engine inope;ative the specific range improves
because of the higher power setting on the remaining two
engines resulting in lower SFC. At design gross weight a
maximum specific range of 0.0445 nautical miles per pound

is obtained at sea level and 0.0465 nautical miles per pound
at 5,000 feet altitude.

Payload Range

The payload range performance is defined by the sizing mission
and is shown to provide 200 nautical miles range in Figure
3.35. The basic mission fuel limit gives a range of 225
nautical miles for zero payload with no change in mission
reserve fuel.

Additional tankage could be provided at a weight penalty
equivalent of two passengers which wculd allow operation *
400 nautical miles with 70 passengers on board.

The improvement in specific range OEI increases the pa. :ad -
range capability as shown in Figure 3.36. The basic TH~100
(87.1) design can operate fully louded out to 246 nautical
miles with one engine shut down.

Stability and Control - TH-100 (87.3)

-

The longitudinal angle of attack stability is shown in
Figure 3.37 for the unaugmented aircraft. As required by

the guideline criteria M, is negative (i.e., positive angle

of attack stability in cruise). This is achieved by 26.3
degyrees delta three in the forward rotor head. The pitch

stability is slightly higher thar. the baseline aircraft in

260 .
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cruise.

The lateral-directional stability derivative N; is positive

(i.e., stable)} over the entire speed range.

The rotor control derivatives are tabulated against airspeecd
in Table 3.14 and compared with the baseline aircraft. The
control derivatives are higher than the baseline aircraft

in all cases. This means that smaller control ranges could
be used to obtain the same control powers as the baseline
tandem rotor helicopter or conversely larger control powers

would be available with the same control authorities.

The damping derivatives of the quiet helicopter are not signi-
ficantly different from the baseline aircraft except that
higher damping is available at high speed. The control
response of this aircraft unaugmented wiil be slightly worse
than the baseline, however, the differences in the damping
derivatives are insignificant compared w. *h the normal

automatic flight control system gains, for example
MMy

oM
a

i

2.0 to 2.5 radians per second squared
per radians per second

3.0 to 5.0 radians per second squared per
radian.

The augmented aircraft would not be noticeably different from
the baseline tandem helicopter.

Tandem Helicopter - TH-100 (87.1) - Noise

The external nnise design criteria for this aircraft is

87.1 PNAB at 500 feet sideline distance in hover (i.e., 5 PNAdB
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| ATRCRAFT v o 40 ] 8o | 120 ] 150 |
BASELINE | L .433 .410 .407 .405 .406
w=67,175 5 Lo
Msg .183 .181 .213 .241 .257
* Nep .170 .155 .151 .149 | .153 |
260 -7.33 | -6.65 |-7.67 | -9.03 -9.65
CONTROL DERIVATIVES .
L, -.70 -.80 ~.90 -.84 -.70 |
My -.70 -.92 {-1.19 | ~1.27 - {--1.34-{ &
N, -.07 | -.05 | -.04a | -.05 -.07 |7
(=]
2y -.22 -3.2 -.43 -.50 -.52 |o
DAMPING DERIVATIVES e
[ 3]
MyFwD 0 .15 .03 -.49 -1.12 | -
AFT 0 .28 .29 -.05 -.49
NgFwn 0 .04 .15 .33 .52
AFT 0 .03 .12 .27 .42
STABILITY DERIVATIVES
| QUIET
W=74,225| Lgg .492 | .462 | .452 | .443 .437 @
Ms .189 .192 .233 .274 .307 ')
Nep .182 .166 .162 .159 .163 €)
Zs. |-8.13 | -7.45 |-8.66 |-10.28 [-11:10 "| |@
Lo -.64 | -.74 | -.85 | -.79 -.66 8?
My -.77 | -1.10 |-1.48 | -1.67 -1.84 H o
N, -.09 -.07 -.05 ~.05 -.06) |~
2y -.23 | -.33 | -.46 | -.57_ | . -.64 |S|®
~
MaFwD 0 .03 -.21 -.86 -1.62)1] 1,
AFT 0 .18 .13 -.28 -.90{| & o
NgFwD 0 .04 .16 .36 .47
AFT 0 .03 .13 .29 .38
(D ROLL - RADS/SECz/INCH GD RATE DERIVATIVES - RADS/SECZ/RAD/SEC
(@ PITCH - RADS/SEC2/INCH (® FT/SEC2/FT/SEC
® VERT -~ FT/SEC2/INCH

TABLE 3.14 . STABILITY & CONTROL DERIVATIVES FOR -5 PNdB
ALTERNATE CONFIGURATION AT DESIGN GROSS WEIGHT.
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quieter than the baseline aircraft).

The octave band hover spectra are plotted in Figure 3.38 for
the total aircraft as well as for each component of the over-
all noise level. The engine inlet is treated the same with an
identical amount of suppression of the inlet noise as the
baseline aircraft and the overall sound pressure level is set
by the rotor broad band noise over most of the frequency range.
However, the engine inlet still dominates above 4 KHz because
of the low level of rotor noise. The NOY distribution is
also shown which is used in the definition of the perceived
noise level of 87.1 PNdB for this aircraft.

The perceived noise level footprint for a typical takeoff
profile is shown in Figure 3.39. The takeoff footprint for
95 PNdB is quite small in _his case indicating no perceived
noise above 95 PNAB at more than 1,000 feet from the point

of takeoff. The highest noise levels are observed along

the flight path and the time histories of perceived noise

at various distances along the flight path are also shown in
Figure 3.40. The landing PNL contours, Figure 3.41, are
r:longated as kefore but much narrower than the baseline or

+5 PNAB case. The time histories of perceived noise for

the landing case are shown in Figure 3.42.

TH-100 (87.1l) - Costs

Direct operating costs per seat mile and seat kilometer as a
runction of block distaiice are shown in Figure 3.43 for the

specified combinations of aircraft utilization and airframe
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FIGURE 3.38, -5 PNdB HELICOPTER - HOVER NOISE SPECTRUM
AND NOY DISTRIBUTION - 87.1 PNAB.
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TH-100(87.1) . *

?lyaway Costs

Airframe Cost $90.00/Lb $1190.00/Lb
Airframe $2,408,670 ' $2,943,930
Dynamic System 1,351,200 1,351,200
Engines 751,887 751,887
Avionics 250,000 250,000
Total $4,761,757 $5,297,017

Direct Operating Costs
Dollars/Seat Mile
Block Distance = 230 St. Miles

Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 90 110
Flying Operations
Flight Crew .0075 .0075 .0075 .0075
Fuel and 0il .0050 .0050 .0050 .0050
Hull Insurance .002° .0023 .0015 .0016
Total Flying Operations .0146 .0148 .0140 .0141
Direct Maintenance
Airframe - Labor .0013 .0013 .0013 .0013
- Material .0010 .0013 .0010 .0013
Engines - Labor .0007 .0007 .0007 .0007
- Material .0010 .0010 .0010 | .0010
Dynamic System - Labor .0013 .0013 .0013 .0013
Total Direct Maintenance .0072 .0075 ! .0072 .0075
Maintenance Burden .0050 .0050 .0050 .0050
Total Maintenance .0122 .0125 .0122 .0125
Depreciation .0100 .0111 .0072 .0079
Total Direct Costs .0368 .0384 .0334 .0345

TABLE 3.15. =5 PNdB HELICOPTER ~ INITIAL AND DIRECT OPERATING COSTS.
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TH-100(87.1)

EXTENDED RANGE VERSION

Flyaway Costs

D210-10858-1

Airframe Cost $90.00/Lb $110.00/Lb
Airframe $2,440,170 $2,982,430
Dynamic System 1,351,200 1,351,200
Engines 151,887 751,887
Avionics 250,000 250,000
Total $4,793,257 $5,335,515
Direct Operating Costs
Dollars/Seat Mile
Block Distance = 230 St. Miles
Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 ag 110
Flying Operations
Flight Crew .0076 .0076 .0u76 .0076
Fuel and 0il .0051 .0051 .(051 .0051
Hull Insurance .0021 .0023 .0115 .0017
Total) Flying Uperations .0148 .0150 .0142 .0144
Direct Maintenance
Airframe - Labor .0014 .0014 .0014 .0014
- Material .0011 .0013 .0011 .0013
Engines - Labor " .0007 .0007 .0007 .0007
- Material .0011 .0011 .0011 .0011
Dynamic System - Labor .0013 .C013 .0013 .0013
- Material .0020 .0020 .0020 .0020
Total Direct Maintenance .0076 ; .0078 | .0076 | .0078
Maintenance Burden .0052 .0052 .0052 .0052
Total Maintenance .0128 .0130 .0128 .0130
Depreciation .0103 .0114 .0074 .0081
Total Direct Costs .0379 .0394 .0344 .0355
TABLE 3.16 -5 PNAB - INITIAL AND DIRECT OPERATING COSTS

(EXTENDED RANGE VERSION) .
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costs, Figure 3.43 also illustrates the impact of extending
the design range of the TH-100 (87.1) to 460 statute miles.
The incredase in costs at the design point range (230 statute
miles) is the result of the loss of 2 avail ble seats due to
the increased empty weight for the installation of larger
fuel tanks. Although not shown in Figure 3.43, it should be
noted that the larger fuel tanks will result in a small
increase (less than 1%) in seat mil: costs at ranges less
than 230 statute miles due to increa. s in airframe mainten-
ance and depreciation costs. 1In the extended range version
of the TH-100 (87.l1) seat mile costs show a continuing
increase beyond 230 statute miles because of the loss of 30
available seats due to additional fuel requirements at the
longer klock distances.
Table 3.15 shows the flyaway costs for the basic TH-100 (87.1)
at $90.00 and $110.00 per pound of cirframe. A breakout of
the direct operating cost factors for the TH-100 (87.1) at
230 statute miles is shcwn in Table 3.15. “'lyaway and direct
operating cost breakouts for the extended ran-ve versicn of the
TH-100 (87.1) are shown in Table 3.16.

3.2 TILT ROTOR - SELECTION OF NGISE CRITERIA DESIGNS

The primary design parameters which influence the external
noise of the tilt rotor are rotor tipspeed and solidity. The
impact of these parameters on the aircraft gross weight, direct
operating cost and sideline noise is shown in Figures 3.44,

3.45 and 3.46.
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QO DESIGN POINTS
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The baseline aircraft sideline noise is 98.2 PNAB and there-

fore the noise derivative aircraft by cdefinition will %»e on
the 103.2 PNdB and 93.4 PNdB lines. Superimposing thes lines
on the direct operating cost and gross weight plots Jdefiaes
the families of aircraft that meet the +5 PNAB critaria.

The -5 PNdB aircraft line on the direct operating cost plot
of Figure 3.46 shows a minimum DOC at a tipspeed of 635 reet
per second. The +5 PNAB line does not show a minimua within
the range of solidities shown and the aircraft selected is
defined by the intersection of the +5 PNdB family and the
minimum solidity for practical blade design. The aircraft
selected has a tipspeed of 915 feet per second.

The two derivative aircraft designs selected in this manner
are discussed in the following sections.

3.2.1 +5 PNAB Tilt Rotor - TR-100 (103.2)

This tilt rotor design is 5 PNAB noisier than the baseline
tilt rotor with a perceived noise level of 103.2 PNdB at 500
feet sideline in hover.

Configuration and Layout

The basic aircraft caoin and cockpit of the aircraft is Y
identical to the baseline aircraft, ‘rhe configquration changes

result from the increased tipspeed and reduced solidity. The
characteristics of the +5 PNdB tilt rotor design are giver

in Table 3.17 and a threeview of the aircraft is shown in

Figure 3.47.
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S.I. UNITS U.S. UNITS

WEIGHTS i

DESIGN GROSS WEIGHT 33,211 Xg 73,217 Lbs

WEIGHT EMPTY 22,116 Kg «8,757 Lbs

FUEL WEIGHT 2,016 Kg 4,436 Lbs
NUMBER OF PASSENGERS 100 100
ROTORS

DISC LOADING 73.24 Kg/m? 15 Lbs/Ft2

DIAMFTER 17.0 m 55.7 Ft.

SOLIDITY .081 .081

BLADE NUMBER 3 3

TWIST 3¢ Degs 36 Degs

TIP SPEED HOVER/CRUISE

POWER
NO. OF ENGINES
RATED POWER/ENGINE

FUSELAGFE
LENGTH
WIDTH (MAX)
CABIN LENGTH

WING
AREA
SPAN
TAPER RATIO
CHORD
ASPECT RATIO
AIRFOIL t/c

HORIZONTAL TAIL
AREA
SPAN
TAIL VOLUME RATIO
ASPECT RATIO

VERTICAL TAIL
AREA
SPAN
TAIL VOLUME RATIO
ASPECT RATIO

PERFORMANCE
NRP CRUISE SPEED
CRUISE ALTITUDE
BLOCK TIME

NOISE

SIDELINE NOISE - 500 FEET/HOVER

TABLE 3.17. +5 PNdB DERIVATIVE DESIGN POINT TILT ROTOR

2797195 m/s

4
2.996 x 10% Watts

28.19 m
4.51 m
17.58 m
68.02 m<
22,10 m

1.0
3.08 m
7.18
.21
20.44 2
10.49 m
1.62
5.37
18.39 m?
4,94 m
.159
1.32
175.1 m/s
4267 m
.76 Hr
103.2 PNdB

TABLE OF CHARACTERISTICS

780

915/641 Ft/Sec.

4
4018 SHP
92.5 Ft.
14.8 Ft.
57.67 Ft.
732.2 Ft.2
72.5 Ft.
1.0
10.1 Ftl
7.18
.21
220 F+,2
34.4 Ft.
1.62
5.37
»
198  Ft.?
16.2 Ft.
.159
1.32

340 Knots
14,000 Ft.
.76 Hr

103.2 PNdB

WA A mes 4 FTare e .
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Wei-thts - TR-100 (103.2)

The +5 PNdB tilt rotor has a design gross weight of 33,210.5
Kg (73,217 pounds). The weight breakdown for this aircraft
is shown in Table 3.18.

The increase in tipspzed results in a reduction in transmission
weight to 5,791 pounds. The rotor system weight is not much
less than the baseline aircraft. This is cdue to the effect of
increased tipspeed or rotor system weight which tends to
counteract the savings expected from reduced diameter and
solidity. The rotor flight control wzights are governed to

a large extent by the rotor weights and as a result do not
reduce significantly at the higher tipspeed. The lighter
gross weight dictates & siightly lower installed power

which shows as a small weight saving in the engine section
and installaticn.

The body weight is essentially the same as the baseline
aircraft ard the cabin and cockpit accommodations, fixed
equipment, etc. are identical to the baseline tilt rotor.

The groundrules governing the sizing of the baseline aircraft
apply to this vehicle also.

The aircraft CG positions and principle inertias are given in
Table 3.19.

Titl Rotor Design - TR-100 (103.2) - Vehicle Performance

Mission Performance

The +5 PNdB tilt rotor has a slightly lower takeoff gross

weight than the baseline aircraft and flies the same 200
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WEIGHT SUMMARY - PRELIMINARY DESIGN
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WEIGHT EMPTY

GROSS WEIGHT

WE IGHT

CENTER OF GRAVITY*

HORIZONTAL FLIGHT
FUSELAGE STATION
WATER LINE

VERTICAL FLIGHT
FUSELAGE STATION
WATER LINE

i MOMENT OF INERTIA

HORIZONTAL FLIGHT
Ixx (ROLL)

I (PITCH)
Yy

I (YAW)
22

VERTICAL FLIGHT
Ixx (ROLL)

I (PITCH)
Yy

I (YAW)
zz

22,115.2 Kg
(48,756 LBS)

12.72 M (500.9 In.)
3.56 M (140.3 In.)

13.08 M (515.1 In.)
3.94 M (155.0 In.)

1,164,775 Kg M2
(858,409 Slug Ft2)
504,030 Kg M2
(371,457 Slug Ft2)
1,357,141 Kg M?
(1,000,178 Slug Ft2)

1,224,388 Kg M2

(902,342 Slug Ft2)
546,907 Kg M2
(403,056 Slug Feet2)
1,468,262 Kg M2
(1,082,071 Slug Ft?)

33,210.5 Ky
(73,217 LBS)

12.77 M (502.7 In.)
3.26 M (128.4 In.)

13.12 M (516.6 In.)
3.51 M (138.1 In.)

1,265,023 Kg M2

(932,209 Slug Ft2)
547,411 Kg M2
(403,427 Slug Ft?)
1,473,945 Kg M?
(1,086,259 Slug Ft2)

1,329,766 Kg M2
(980,003 Slug Ft2)
593,978 Kg M2
(437,746 Siug Ft2)

1,594,629 Kg M2
(1,175,200 Siug Ft?}

*FUSELAGE STATION 0 IS NOSE OF BODY, CENTERLINE OF ROTOR IN
HORIZONTAL FLIGHT IS 4.6 METERS ABOVE WATER LINE O.

TABLE 3.19 .

WEIGHT CENTER OF GRAVITY AND MOMENT OF

INERTIA, +5 PNdB TILT ROTOR.
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nautical miles design mission with the same payload. A
summary of the aircraft design misaion performarce is shown
in Tables 3.20 and 3.21.

The taxi, takecff and initial air maneuver use 85 Kg (187
pounds} of fuel. The aircraft then climbs to an altitude of
4,267 miles (14,000 feet) at an average rate of climb of
16.76 m/s (3,330 feet per minute). The climb segment
consumes 176 Kg (389 pounds) of fuel for a range credit of
22.7 Km (12,25 nautical miles). The aircraft then cruises
at normal rated power at an average speed of 175.4 m/s

(342 knots) to a range of 319 Km {172 nautical miles). The
cruise segment fuel is 988 Kg (2,178 pounds). The remainder
of the 370 Km (200 nautical miles) design range is achieved
during the descent to 2,000 feet at an average rate of descent
of 10.49 m/s (2,064 feet per minute). The fuel used duriag
descent is 61 K¢ (134 pounds).

“he final air maneuver, descent landing and taxi use an
additional 207 pounds of fue! to complete the design range.
The reserve fuel is computed based upon fuel for an additional
50 nautical miles and a 20 minute loiter which requires a
further 613 Kg (1,351 pounds) for a total fuel load of

1,935 Kg (4,266 pounds).

Noigse Derivative Tilt Rotor (103.2 PNdB)

Hover Performance

The hover performance of the +5 PNdB design point tilt rotor

is shown in Figures 3.48 through 3.51. The sea level hover

286
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NOISE DERIVATIVE AIRCRAFT

TILT ROTOR/100 PASSENGER/103.2 FNdB
ALL ENGINES OPERATING

45 PNAB
F/W = 1,05
6 TORQUE LIMIT
12x1C 16'—'3-‘--
N leo
| !
2 11
R
x 10F @ ,
g |4 N
L ¥
g o & 12
)
i« 8f
10

x10 T
100
o 45F @
X - Jb
| 1 TOR t 6‘
¢ o 90
E 40 E
4] (7)) OGe
w 1)
g |18 so0
O o
3s}
70
amnesasssdsansssse el —
30 50 70 90 110
AMBIENT TEM%?RATURE - PEGREES ¥ \
15 30 45

AMBIENT TEMPERATURE - DEGREES C
FIGURE 3.48., EFFECT OF AMBIENT TFMPERAILURE ON SEA LEVEL
HOVER PERFORMANCE - AEO.

99

'E“i i S



*
e B SRR AT R, s e

TR T N R DR W Y s

-

3
-

TOTAL POWER - WATTS

GROSS WEIGHT - Kg

D219-10858-1

NOISE DERIVATIVE AIRCRAFT

TILT ROTOR/100 PASSENGER/103.2 PNdB

ONE ENGINE INOPERATIVE

16 fx103 +5 PNdB
11x10° F/W = 1.03
% 14 ¢
10F @
2
9 12}
8%
10t
i n3
45, 3100Fx10
x10
g0 2
sof ? &
(3]
jaad
&)
an
3sf
%
O DES. PT.
¢4
U 70b
3o}
30 50 70 90 110
AMBIENT TEMPERATURE - DEGREES F
| ) S E '
0o 15 20 45

FIGURE 3.49.

AMBIENT TEMPERATURE - DEGREES C

EFFECT OF AMBIENT TEMPERATURE ON SEA LEVEL
HOVER PERFORMANCE - OEI.
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gross weight capability as a fhinction of ambient temmerature
for AEO and OEI conditions is given in Figures 3.48 and

3.49.

The sizing condition is one enocine inoperative, out of ground
effect at sea level, 90-degre=s F and is shown in Figure 3.49.
For this condition the design gross weight is 33,211 Kg
(73,217 pounds). This assumes a force to weight ratio of

1.03 and a 9% increase in the rated takeoff power of the

three remainina overating engines.

Both figures indicate the variation of gross weight capability
for in and out of ground effect as a functicn of temperature.
For temperatures above 90-degrees F the passenger capacity
would need to be reduced, for temperatures below 90-degrees

F the 100 passenger capac:ity would restrict the aircraft
weight to the design gross weighuv of 33,211 Kg (73,217 pounds)
and the additional weight capability can be converted to

additional force to weight for maneuvers.

Hover gross weight as a function of altitude up to 16,000
feet is shown for AEO and OEI conditions in Figures 3.50 and
3.51. Both OGE and IGE data are given for standard day
atmosphere and standard day plus 31-degrees F, (equivalent

to 90-degrees F at sea level altitude). The fully loaded

293
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D210-10858-1
aircraft (100 passengers) can take off on a standard day
up to 5,000 feet with one engine inoperative, as shown in
Figure 3.51. With all engines operating this altitude is
increased to 8,000 feet as shown in Figure 3.51.

Cruise Performance

The cruise performance is dictated by the power required to
fly straight and level and the power available is determined
by the one engine inoperative sizing criteria. These data
are shown as a function of airspeed in Figure 3.52 for three
aircraft weights. The intersection of the power required and
power available lines at design gross weight is the trans-
mission sizing condition. This point allows a maximum cruise
speed of 341 knots (TAS) at 14,000 feet. The power available
at normal rated power with one engine inoperative is also
shown and indicates that a cruise speed of 291 KTAS can be
maintained at design gross weight. At the lightest flying
weight the maximum speeds achieved at normal rated power are
360 KTS TAS all engines operating and 317 KTS TAS one engine
inoperative.

Similar data are shown in Figure 3.53 for 1,524 m (5,000 feet)
altitude. The power required lines are higher at this altitude
and the performance of the aircraft becomes limited by the
transmission torque limit at almost the same power level

as the one engine inoperative case. The transmission limit
maximum airspeed at design gross weight is 305 knots and with

one engine out a cruise speed of 302 knots can be maintained

294



[R——

— - -

—
1
o0
[Sg}
o o]

>
=
|
]
—
~N
o

*dOLOd IT1IL - dPNd &+
CATAYTIVAY/ATIINOTd ¥3IMOd - IONVIWHOJIEId ISIN¥D  "7%°¢ JHNOId

SLONY - (Q33dSydIvV

4} 00€ 00z __ 001
I T T z
r4
b3 m
o
wn
HE
9
<]
=zl 3
=1 &
o o]
8319
g <
=l 3
)
[€)]
0T
- =N
NSHX == — L — (oa¥) I
B (w £92Z%) Idda 0CO‘PT - FANLILIV
MOHXNA
@PNd G+
(b4 peo‘ge) S€1 ZBL'OS aM0 90TX0T

LMAINW
mMeda

(bx €z1‘82) ST 000‘Z9
(b 0TZ’€€) sSdT LTZEL

gPNd 2 €0T/93ONISSYd 00T/JdOLO¥ IIIL

LIVIODIIV FAILVAIYIA ISION

LY

295



M *FTIVIIVAY/QIHIN0TY ¥43IMOd - JONVWHOLNId IJSINAD
{

SIONM - d3adsuIV
002

D210-10858~-1

TFSTE d¥NDId

(w pzST) 1334 000S - FANLILTY c0TX2T

———— —— \\
. _— apNd S+
— (B PEO‘€Z) SAT THL'OS =  AMO
(oa) & (BM €£zT’82) SET 000°Z9 = IMAIW
(b 0TZ’€€) S9T LTIZ'€EL = MoOd
e Wad ISIOND AVA QIVANYLS

gPNd Z°€0T/d3ONASSYd 00T/90L0¥ ITIIL

LINIDOYIV JATILVATIHIA ISION

COT
Z
|4
E
-3
Bl &
2] i
k| 2
=1 B
w.
ol =
8 Slok
3| 3
3
b o)
o1
8
90TX0T

Wig

296



PRRTE IR, - o SRR

It

P —

D210-10858~1
at 5,000 feet. These speeds are in excess of the 250 knot
EAS restriction below 10,000 feet.
The maximum speed performance is shown as a function of
altitude in Figure 3.54 for both design gross weight and
operating weight empty.
The aircraft maximum rate of climb data are shown in Figure
3.55. With all engines cperating at design gross weight
the maximum rate of climb is 23.42m/s (4,610 feet per minute)
at sea level. At Jesign cruise altitude 4,267 m (14,000 feet)
a rate of climb of 13.71 m/s (2,700 feet per minute) is
available. With one =ngine inoperative the aircraft can
achieve 17.88 m/s (3,520 feet per minute) rate of climb at
sea ievel and 9.29 m/s (1,830 feet per minute) at 14,000
feet. The rates of climb at design gross weight do not
require a fuselaye attitude of greater than 20-degrees. At
operating weight empty the maximum rates of climb, (both all
engines operating and one engine inoperative) exceed 20
degrees fuselage attitude at the lower altitude. Two lines
are given for these cases in Figure 3.55. One for maximum
rate of climb and one limited to a fuselage incidence of
20 degrees. With no fuselage attitude limit a maximum rate
of climb of 8,200 feet per minute can be obtained at
operating weight empty and all engines operating.

Specific Range

The fuel consumption of the aircraft is given in terms of

specific range in cruise at both 5,000 feet altitude and
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14,000 feet altitude with all engines operating in Figure

3.56. At the design cruise altitude of 4,267 m (14,000 feet)
the maximum specific range is 0.088 nautical miles per pound
of fuel at design grcss weight increasing to 0.118 nautical
miles per pound at operating weight empty. The best range
speed at design gross weight is 232 knots TAS and reduces to
212 KTAS at minimum flying weight.

At 5,000 feet the best range speeds are about 14 knots slcower
and the specific range is reduced.

At design altitude and weight the specific range at NRP

is 0.069 nautical miles per pound of fuel.

The specific range data with one engine inoperative at the
same aircraft weights and altitudes are shown in Figure 3.57.
The effect on the three remaining engires of operating at an
increased fracit.. .. of power is to improve the specific fuel
consumption and increase the specific range.

Payload Range

The design payload range is specified in the mission profile
and is shown to be met in Figure 3.58. The aircraft carries

a 100 passenger payload (18,000 pounds) including baggage over
a 200 nautical mile range with reserves as per the guide-
lines.

The besic mission fuelvlimit defines the range at zero payload
to be 238 nautical miles.

The aextra tanks were included in this aircraft for a 400

nautical mile range. The additional tank weight woulid reduce
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4 -

NOISE DERIVATIVE AIRCRAFT

a4»r
TILT ROTOR/100 PASSENGER/103.2 PNdB
STANDARD DAY CRUISE RPM
DGW = 73,217 LBS/33,210 Kq
§ MIDWT = 62,000 LBS/28,123 Kg
3 OWE = 50,782 LBS/23,034 Kq
50 o 12 ALL ENGINES OPERATING
< g 15 PNdB
E .45 ;
" = ALTITUDE - 5000 FEET (1524 m)
. .4oﬂ'-1° STANDARD DAY
) w
) )
Z
2 35| 3
B .30) & +
a2 |3 %
B B,
.25l o6
ALTITUDE - 14,000 FEET (4267 m)
.50 12 STANDARD DAY
o m* 4|
S IS
5 .45
>
| A
40 , <10
g i
A
ML 5
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the passenger load by one passenger at 200 nautical miles
and the aircraft could operate with 83 passengers out to
400 nautical miles.

With one engine inoperative the payload range of the basic
TR-100 (103.2) design improves due to the increase in
specific range shown in Figure 3.57. The payload range
data for this case is given in Figure 3.59. The fully
loaded aircraft range increases to 238 nautical miles while
maintaining the basic mission fuel reserves.

Stability and Control - TR-100 (103.2)

Hover Trim ..nd Control

The cyclic pitch required to trim in hover with the nacelles
at 90 degrees and at design gross weight is shown in Figure
3.60. This assumes the same hover CG range as the baseline
aircraft. The cyclic required to trim the most critical
condition is 2.2 degrees.

The control power in pitch is shown in Figure 3.60. The
sensitivity of pitch control power to cyclic control is
0.121 radians per second squared per degree. At a maximum
cyclic pitch control setting of 5.72 degrees a pitch acceler-
ation of .685 radians per second squared is available when
zero cyclic is required for trim; with the CG at its most
adverse location a pitch acceleration of .42 radians per
second squared can be obtained.

Yaw and roll control powers are shown in Figure 3.61. The

yaw control sensitivity is slightly below the value estimated
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for the design point aircraft. However, maximun yaw
acceleration of .335 radians per second squared is available
at design gross weight. At a gross weight of 58,700 pounds
the available yaw control is reduced to 0.262 radians per
second squared. This reduction is caused by the variation
of differential in-plare force with gross weight. This
in-plane force is mostly obtained by tilting the thrust
vector. Thus, there is almost a direct reduction of yawing
moment with gross weight whereas yaw inertia does not reduce

as fast. This results in a reduction of yaw acceleration.

The roll control per degree of differential collective is
slightly less than for the baseline aircraft. This is due
to reduced differential thrust as a result of lower solidity
and also to a reduced span. This is offset to some extent
by the reduced roll inertia, however, the net effect is to
reduce the roll control power to 0.79 radians per second
squared at 4 degrees differential collective. Thie is

still higher than the 0.6 radians per second squared guide-
line requirement. At lighter weights roll control power is
marginally increased.

The variation of neutral point with cruise speed is plotted
in Figure 3.62 for various horizontal tail size. 1Increased
RPM tends to increase nose up pitching moment of the rotor.
Reduced solidity and diameter tend to counteract this effect,

however, the tail volume ratio providing the required 5%
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static margin is still longer than that of the baseline

aircraft. The +5 PNdB aircraft 1ras a horizontal

tail volume ratio of 1.62 and provides 5% static margin down
to 140 knots.

The lateral directional derivatives are shown in Figure 3.63.
The side force due to sideslip is larger than the desaign
point aircraft and will reqguire a larger roll angle to trim
in flying a straight-ground track in sideslip.

The dihedral effect is positive (i.e., 'Cze) but reduces to

almost zero at maximum speed 360 knots.

The directional stability is positive, i.e., positive Cng

and increases with airspeed. As with the design point aircraft
the dutch roll mode will be improved at high speeds as a

result of increased Cpz and less dihedral effect. The damping

derivatives due to roll and yaw are dgreater than for the
design point aircraft and are shown in Figures 3.64 and 3.65.

Tilt Rotor Design - TR-100 (103.2) Noise

The +5 PNAB noise derivative aircraft has a design hover
tipspeed of 915 feet per second. This increase in tipspeed
increases the rotational and broadband components of rotor
noise as shown in Figure 3.66 where sound pressure levels

as a function of octave band frequency are presented. The
tipspeed effect is noticed at the higher frequencies when
compared to similar data for the baseline aircraft in Figure

2.90. NOY values for the hover condition used to establish
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DESIGN POINT +5 PNAB TILT ROTOR

REF. CG = 34% C (AFT LIMIT FOR DESIGN POINT AIRCRAFT)
GW= 73,217LB/33,213Kg

SIDEFORCE COEFFICIENT

—_ -

———

DIHEDRAL EFFECT COEFFICIENT

DIRECTIONAL STABILITY COEFF.

. — .
140 180 220 260 300 340 380
VELOCITY-KNOTS
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the 103.2 PNdB noise level are given in Figure 3.66.

Contc. 3 of constant perceived noise levels 90, 95 and 100
PNdB values for takeoff and landing are given in Figures

3.67 and 3.69. The contours are symmetrical about the flight
path, with the landing contours being somewhat wider than

the takeoff resulting from the increased time in the landing

profile dictated by the guideline sink rate requirements.

Figures 3.68 and 3.70 show the takeoff and landing profile as
a function of distance from the ground terminal. Time
increments are indicated on the curve to be used with the
flight path center line PNdB data given in the lower portion
of the figure. The PNAB as a function of time from takeoff
or touchdown give time history of an observer staticned at
the indicated distance from the terminal. The peak noise
values decrease at the fartlerest observer position as

a result of the altitude of the aircraft and the tipspeed
reduction as indicated on the plot.

Tilt Rotor - TR-100 (103.2) - Costs

The initial cost of this tilt rotor design is slightly

less thian the design point aircraft at $5.n3 million at
$90.00 per pound airframe costs and $5.73 million at $110
per pound. The reduction in "fly away" cost between this
tilt rotor and the design point is primarily due to dynamic

systems and engine cost reductions.
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The direct operating cost cf the +5 PNdB aircraft is shown
in Table 3.22 and indicates almost identical operating costs
to the baseline aircraft indicating that no savings were ob-
tained by increasing the external noise design criteria.

An extended range version of the +5 PNdB was also calculated
and the initial and direct operating costs at the design
range of 230 statute miles is shown in Table 3.23.

The effect of range on direct operating cost is shown in
Figure 3.71. The plot shows the basic TR-100 (103.2) design
up to 200 nautical miles and the extended range version of
the aircraft from 200 to 400 nautical miles. Despite the
reduc .ion in available seats on the extended range aircraft
the costs do not start to rise again until beyond 300
nautical miles.

3.2.2 Tilt Rotor Design - TR-100 (93.4)

Reduction of noise levels from the baseline aircraft is
achieved by changing the rotor design parameters since rotor
broadband noise is the deminating contribution to the per-
ceived noise level. To obtain a reduction in PNL of 5 PNdB
the tipspeed is reduced to 640 feet per second, and the soli-
dity is increased to 0.111 to obtain minimum direct cperating
cost for this air-raft as indicated in Figures 3.44 to 3.4e6.

Configuration and Layout

The ~5 PNdB aircraft is shown in Figure 3.72 and a table of
characteristics is given in Table 3.24. The fuselage, cabin

and cockpit layout and configuration is identical to that
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TR-100(103. 2) L210-10858-1
Flvaway Costs

Airframe Costs $90.00/Lb $110.00/Lb
Airframe $3,154,950 $3,856,050
Dynamic System 873,360 873,360
Engines 755,728 755,728
Avionics 250,000 250,000
Total $5,034,038 $5,735,138

Direct Operating Costs

Dollars/Seat Mile

Block Distance =

230 St. Miles

Utilization (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 90 110
Flying Operations
Flight Crew .0045 .0045 .0045 . 0045
Fuel and 0il .0033 .0033 .0033 .0033
Hull Insurance .0013 .0015 .0009 .0011
Total Flying Operations .0091 .0093 .0087 .0089
Direct Maintenance
Airframe - Labor .00'3 .0013 .0013 .0013
- Material 002 © .0014 .0011 .0014
Engines - Labor .00t .0006 .0006 .0006
= Material .0008 .0008 .0008 .0008
Dynamic System - Labor .0005 .00605 .0005 .0005
- Material | .0008 | .0008 | .0008 | .0008 |
Total Direct Maintenance .0051 .0054 .0051 .0054 ]
Maintenance Burden .0037 .0037 .0037 .0037
Total Mair.tenance .0088 .0091 .0088 .0091
Depreciation .0063 .0071 .0045 .005]
Total Direct Costs .0242 .0255 .0220 .0231

TABLE 3.22,

321
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D210-10858-1
TR-100(103.2) .
EXTENDED RANGE VERSION

Flyaway Costs

Airframe Cost $90.00/Lb . $110.00/Lb
Airframe $3,171,150 $3,875,850
Dynamic System 873,360 873,360
Engines 755,728 755,728
Avionics 250,000 250,000
Total $5,050,238 $5,754,938

Direct Operating Costs
Dollars/Seat Mile .
Block Distance = 230 St. Miles

Utilizetion (Hrs/Yr) 2500 3500
Airframe Cost ($/Lb) 90 110 90 110
Flying Operations
Flight Crew .0046 .00456 .0046 .0046
Fuel and 0il .0033 .0033 .0033 .0033 |
Hull Insurance .0013 .0015 .0010 .0011 |
_ Total Flying Operations .0092 .0094 .0089 .0090
Direct Maintenance
Airframe - Labor .0014 .0014 .0014 .0014
- Material .0012 .0014 .0012 .0014 |
Engines - Labor .0006 .0006 .0006 .0006 !
- Material .0008 .0008 .0008 .0008 |
Dynamic System - Labor .0005 | .0005 ; .0005 | .0005 |
~ Material .0008 .0008 .0008 .0008 i
Total Direct Maintenance .0053 .00655 .0053 .0055 )
Maintenance Burden .0038 .0038 .0038 .0038 ,
Total Maintenance L0091 .0093 .0091 .0093
Depreciation .0064 .0072 .0046 .0052
Total Direct Costs .0247 .0259 .0226 .0235

TABLE 3.23 INITIAL AND DIRECT OPERATIVE COSTS -
+5 PNdB TILT ROTOR (EXTENDED VERSION) .
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S. I. UNITS U. S. UNITS
WEIGHTS
DESIGN GROSS WEIGHT 36,143 Kg 79,682 Lbs
EMPTY WEIGHT 24,820 Kg 54,718 Lbs
FUEL WEIGHT 2,240 Kg 4,939 Lbs
NUMBER OF PASSENGERS 100 100
ROTORS " )
DISC LOADING 73.24 Kg/m 15 Lbs/Ft
DIAMETER 17.74 m 58,2
SOLIDITY .111 .111
BLADE NUMBER 3 3
TWIST 36 Degs 36 Degs
TIP SPEED HOVER/CRUISE 195/137 m/s 640/448 Ft/Sec
POWER
NUMBER OF ENGINES 4 4
RATED POWER/ENGINE 3.631 X 10° watts 4869 SHP
FUSELAGE
LENGTH 28.19 m 92.5 Ft
WIDTH 4.51 m 14.8 Ft
CABIN LENGTH 17.58 m 57.67 Ft
WING
AREA 74.03 m2 796.8 Ft2
SPAN 22.82 m 74.9 Ft
TAPER RATIO 1.0 1.0
CHORD 3.23 m 10.6 Ft
ASPECT RATIO 7.04 7.04
AIRFOIL t/c .21 .21
HORIZONTAL TAIL
AREA 20.13 m? 216.7 Ft2
SPAN 10.67 m 35 Ft
TAIL VOLUME RATIO 1.31 1.31
ASPECT RATIO 5.65 5.65
VERTICAL TAIL
AREA 26.95 m2 290.1 Ft?
SPAN 6.14 m 20.15 Ft
TAIL VOLUME RATTIO .159 .159
ASPECT RATIO 1.4 1.4
PERFORMANCE
NRP CRUISE SPEED 182.6 m/s 355 KTAS
CRUISE ALTITUDE 4267 m 14,000 Ft
BLOCK TIME .730 Hours . 730 Hours
NOISE
SIDELINE NNISE - 500 FEET/
HOVER 93.4 PNAB 93.4 PNAB
TABLE 3.24. -5 PNAB DERIVATIVE DE3IGN [OINT TILT ROTOR

TABLE OF CHARACTER1STICS.
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of the baseline tilt rotor aircraft. The design parameters
changed to obtain the reduced PNL are solidity and tipspeed.
The major effect of changes in these parameters is in the
dynamic system of ‘he vehicle. The rotor disc loading

was held at 15 pounds per feet squared and the rotor diameter
increased to 58.2 feet. The wing span is dictated by the
rotor radius plus rotor f{uselage clearance and also increases
to 74.9 feet.

The wing loading of 100 pounds per feet sguare was maintained
and as a result wing area increased to 796.8 feet square and the
aspect ratio reduced to AR = 7.04.

The increased aircraft gross weight demands a higher installed
power (4869 SHP per engine) which in combination with

reduced tipspeed and therefore higher torque levels implies

a larger and heavier transmission.

The change in cruise RPM reduces the nose up pitching moment
effect of the rotor and results in a lower horizontal tail
volume ratio (l.31).

The increased installed power and decreased RPM (i.e., increased
rotor efficiency) improve the cruise performance a little to
give a normal rated power speed of 355 knots at 14,000 feet
altitude.

TR-100 (93.4) - Weights

The design takeoff gross weight four the -5 PNdB tilt rotor
is 36,143 Kg (79,682 pounds) an increase of nearly 5,000

pounds over the baseline aircraft. This is due to the
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reduction in rotor tiprpeed and increased rotor solidity
and diameter. The weights statement is given in Table
3.25.
The reduction in tipspeed tends to reduce rotor weight, but
this effect is more than offset by the increase due to
solidity and diameter and the net result is a slighly
hzavier rotor system.
The flight control weights follow the rotor weight because
the upper control design is set by rotor blade size, weight
and pitch inertia. The flight controls weight is in~ »ased
accordingly. The governing parameter in the drive system
weights is the reduction in tipspeed which increases the
torque requirements. This coupled with the larger power
requirement of the -5 PNdB tilt rotor causes a substantial
increase in the drive systam weight. The larger power
requirement also implies higher engine and installation
weights. The result is a 29.5% increase in propulsion group
weights over the baseline aircraft. The landing gear is taken

as a percentage of empty weight and increases accordingly.

The basic fuselage weight, cabin and cockpit accommodations,
etc., remain the same as those of the basic tilt rotor

design.

The increase in takeoff gross weight of this aircraft requires
an increase in mission fuel to 2,240.3 Kg (4,939 pounds), 11%
more than the baseline aircraft. The principle inertias

and CG locations for this aircraft are given in Table 3.26.
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WEIGHT EMPTY GROSS WEIGHT

WEIGHT 24,819.5 Kg

(54,718 LB)

36,143.0 Kg
(79,682 LB)

CENTER OF GRAVITY*

HORIZONTAL FLIGHT

FUSELAGE STATION 12.72 M (500.6 In.) 12.77 M (502.6 1In.)
WATER LINE 2.56 M (140.6 In.) 3.27 M (128.6 In.)
VERTICAL FLIGHT
FUSELAGE STATION 13.08 M (515.0 In.) 13.12 M (516.5 1In.)
WATER LINE 3.97 M (156.2 In.) 3.54 M (139.2 In.)
MOMENT OF INERTIA
HORIZONTAL FLIGHT .
Iyx (ROLL) 1,307,205 Xg M? 1,405,598 Kg M’
(963,376 Siug Ft?) (1,035,889 Slug Ft?)
Iy, (PITCH) 563,663 Kg M? 608,241 Kg M’
(416,876 5iug Ft?) (448,258 Slug Ft?)
I,, (YAW) 1,523,096 Kg M 1,637,736 Kg M
(1,122,482 Slug Ft?) (1,206,969 Slug Ft?)
VERTTCAL FLIGHT ]
I, (ROLL) 1,374,108 Kg M2 1,477,537 ¥Kg Mf
(1,012,682 Slug Ft?) (1,088,906 Slug Ft?)
i {PITCii) 613,784 Kg M? 659,983 Kg M-
Ys (452,343 Slug Ft?) (486,390 Sluy Ft?)
I,, (YAW) 1,647,804 Kg M? 1,771,832 Kg M?
(1,214,389 Slug Ft?) (1,205,794 Slug Ft?)
*FUSELAGE STATION 0 IS NOSE OF BODY, CENTERLINE OF ROTOR IN

HORIZONTAL FLIGHT IS 4.6 METERS ABOVE WATER LINE 0.

Ko

TABLE3.26.WEIGHT, CENTER OF GRAVITY, AN MOMENT OF INERTIA
-5 PNDB TILT ROTOR
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Tilt Rotor Dezign - TR-100 (93.4) - Vehicle Performance

Mission Performance

The -5 PNAB tilt rotor is sized to fly the 200 nautical mile
mission with tlle same reserve capability as the baseline air-
craft. A summary of the mission performance is provided in
Tables 3.27 and 3.28.

The taxi takeoff and initial air maneuver require 113 Kg (227
pounds) of fuel. The initial air maneuver is included with the
takeoff in Tables 3.27 and 3.28. The aircraft then climbs to
a cruise altitude of 14,000 feet at an average rcte of climb
ot 27 m/s (5,316 feet per minute) foir a range credit of 13 Km
(10 nautical miles). The fuel used during the climb to alti-
tude amounts to 165 Kg (364 pounds).

The cruise segment is performed at 14,000 feet at an average
spe=d of 183 m/s (355 KTAS)! for a range credit of 315 Xm (170
nautical miles). The cruise fuel uesed is 1,162 Kg

(2,561 pounds).

The descent to 2,000 feet altitude is done at an average rate
of descent of 20 m/s (1,960 feet per minute) and completes
the range to 371 Km (200 nautical miles). The fue) required
for the descent is 79 Kg (173 pornds). An air maneuver at
2,000 feet used an additional 28 Kg (52 pounds) of fuel. The
descent from 2,000 feet, landing and taxi complete the desigyn
mission for a total fuel weight of ,8 Kg (181 pounds).

“he additional fue. load required for 50 nautical miles and

zJ) minutes stand-off at an alternate landing site require a
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D210-10858-1
reserve fuel load of 639 Kg (1,403 pounds) bringing the total
mission fuel to 2,240 Kg (4,939 pounds).

The basic mission block time is 0.73 hours.

Hover Performance

The effect of ambient temperature on sea level hover perfor-
mance s shown in Figures 3.73 and 3.74. The all engines
operati.g case, Figure 3.73 shows a gross weight lift capa-
bility of 99,500 pounds at sea level, standard day and 89,000
pounds at 90 degrees F at takecff power -ut of ground effect.
At temperatures above 59 degrees F the aircraft is power
limited and below 59 degrees F the transmission torque limits
the gross 1lift.

With one engine inoperative, Figure 3.74, performance is power
limited. This is the sizing condition which defines the takeoff
gross weight as 79,682 pounds OEI at sea level, 90 degrees

F.

The effect of altitude on hover performance is shown in Figures
3.75 and 3.76. With all engines operating on a hot day the
aircraft can maintain hover up to 5,000 feet and 9,000 feet

on a standard day. With one engine inoperative, the aircraft
can hover at design gross weight at 5,000 feet on a standard
day.

Cruise Tarformance

The power required and power available data for the -5 PNdB
tilt rotor is shown in Figures 3.77 and 3.78 at 5,000 feet

altitude and 14,000 feet altitude. At 5,000 feet the cruise
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g “r NOISE DERIVAT1VE AIRCRAFT
TILT ROTOR/100 PASSENGER/93.4 PNdB

ALL ENGINES OPERATING

-5 PNdB
o 15y ¢ 20x10° F/W = 1.05
E %10 TORQUE LIMIT
2 | -
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' g
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FIGURE 3.73. EFFECT OF AMBIENT TXMPERATURE ON SEA LEVEL
HOVER PERFORMANCE - -5 PNdB TT.T ROTOR.
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NOISE DERIVATIVE AIRCRAFT

TILT ROTOR/100 PASSENGER 93.4 PNdB
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performance is limited by the transmission torque limit (all
engines operating). The one engine inoperative power limit
at NRP is less than the transmission torque limit and defines
the maximum cruise capability at 5,000 feet.

The maximum cruise speed at 14,000 feet at design gross weight
is 355 Knots and is limited by both power and transmission
torque limit, all engines operating. This condition was used
to size the transmission limit. At lighter weights the maxi-
mum performance is transmission limited (AEO). With one
engine inoperative the power available limits cruise perfor-
mance as shown in Figure 3.78.

The maximum speed performance of the -5 PNdB aircraft is plotted
as a function of altitude in Figure 3.79. With all engines
operating, the transmission limit defines the maximum cruise
speed below 14,000 feet, and the power is limiting at higher
altitudes.

The aircraft is capable of speeds in excess of 300 knots at all
weights OEI and AEO, however, the 250 knot EAS restriction
shown on Figure 3.79 defines the operating envelope at alti-
tudes less than 10,000 feet.

The maximum rate of climb at design gross weight is 5,250 feet
per minute at sea level with all engines operating as shown

in Figure 3.80. At design cruise altitude the rate of climb
reduces to 3,300 feet per minute. With one engine inoperative
the aircraft can still maintain 4,100 feet per minute rate of

climb at sea level and 2,270 feet per minute at 14,000 feet
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at design gross weight.
The aircraft fuel consumption data in cruise are shown in
Figures 3.81 and 3.82 in terms of specific range. Data are
given for 5,000 feet and 14,000 feet altitudes for both all
engines operating, Figure 3.81, and one engine inoperative,
Figure 3.82.
At 5,000 feet, al'l engines operating, the maximum specific
range at design gross wecight is 0.0667 nautical miles per
pound of fuel rising to 0.082 nautical miles per pound of
fuel at operating weight empty.
At design altitude theye values increase to 0.081 nautical
miles per pound of fuel and 0.106 nautical miles per pound of
fuel respectively.
The maximun specific range performance improves with one engine
inope rative, Figurc 3,82, because the engine is operating at
a higher powesr fraction which reduces the SFC.
The payload range performance of the airdraft is as defined by
the mission and is shown in Figure 3.83. The basic aircraft
carcies 100 passengers over 200 nautical mile range exclusive
of reserve fuel. The basic mission f el allows a range of
252 nautical miles with no payload. The improved specific
range OEI is reflected in the payload range data shown in
Figure 3.84. The fully laden aircraft has a range of 219

nautical miles exclusive of reserves.

Flying Qualities - TR-190 (93.4)

In hover, longitudinal cyclic pitch control is used to trim

344

-



o e o o |

]

o

[ 8}

SPECIFIC RANGL - xm/Kg
PECIFIC RAN

.
(84

.
-

SPCCIFIC RANGE - NMI/LE

SPE’ IFIC RANCZ - Km/Kg
(¥4

08y

NMI/LB

o~ -
wus -

.06

i
~

. 10

.06~

FIGURE 13.81,

— e el
— e =

N210-10858-1

NOISE DERIVATIVZ AIRCRAFT

TIIT ROTOR/100 PASSENGER/93.4 PNdB
CRUISE RPM

DGW = 79,628 LBS/36,143 Kg
MIDWT = 68,213 LBS/30,941 Kg
OWE = 56,743 LBS/25,738 Kg

ALL ENGINES OPERATING

=2 DPNdB

ALTITUDE - 5000 FEET (1524 m)

STANDARD DAY

— e el

ALTITUDE = 14.000 FEET (4267 m)

STANDARD DAY

200 AIRSFEEL - KNOTS 300

CRUISE FERFORMANCL - SPECIFIC RANGE -
-5 PNdB TILT ROTOR -~ AEO.
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NOISE DERIVATIVE AIRCRAFT

TILT ROTOR/100 PASSENGER/93.4 PNdB
STANDARD DAY  CRUISE RPM
DGW = 79,682 LBS/36,148 Kg
MIDWT = 68,213 LBS/30,941 Kg
OWE = 56,743 LBS/25,738 Kg
ONE ENGINE INOPERATVIE
:2\ - -5 _PNdB
X 3
g S ALTITUDE - 5000 FEET (1524 m)
40l = - 10, STANDARD DAY
. z
' |
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FIGURE 3.82. CRUISE PERFORMANCE - SPECIFIC RANGE -
-5 PNdB TILT ROTOR - OEI.
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